News Release

Window-sized device taps the air for safe drinking water

MIT engineers have developed an atmospheric water harvester that produces fresh water anywhere — even Death Valley, California.

Peer-Reviewed Publication

Massachusetts Institute of Technology

Today, 2.2 billion people in the world lack access to safe drinking water. In the United States, more than 46 million people experience water insecurity, living with either no running water or water that is unsafe to drink. The increasing need for drinking water is stretching traditional resources such as rivers, lakes, and reservoirs. 

To improve access to safe and affordable drinking water, MIT engineers are tapping into an unconventional source: the air. The Earth’s atmosphere contains millions of billions of gallons of water in the form of vapor. If this vapor can be efficiently captured and condensed, it could supply clean drinking water in places where traditional water resources are inaccessible. 

With that goal in mind, the MIT team has developed and tested a new atmospheric water harvester and shown that it efficiently captures water vapor and produces safe drinking water across a range of relative humidities, including dry desert air. 

The new device is a black, window-sized vertical panel, made from a water-absorbent hydrogel material, enclosed in a glass chamber coated with a cooling layer. The hydrogel resembles black bubble wrap, with small dome-shaped structures that swell when the hydrogel soaks up water vapor. When the captured vapor evaporates, the domes shrink back down in an origami-like transformation. The evaporated vapor then condenses on the the glass, where it can flow down and out through a tube, as clean and drinkable water.

The system runs entirely on its own, without a power source, unlike other designs that require batteries, solar panels, or electricity from the grid. The team ran the device for over a week in Death Valley, California — the driest region in North America. Even in very low-humidity conditions, the device squeezed drinking water from the air at rates of up to 160 milliliters (about two-thirds of a cup) per day. 

The team estimates that multiple vertical panels, set up in a small array, could passively supply a household with drinking water, even in arid desert environments. What’s more, the system’s water production should increase with humidity, supplying drinking water in temperate and tropical climates.

“We have built a meter-scale device that we hope to deploy in resource-limited regions, where even a solar cell is not very accessible,” says Xuanhe Zhao, the Uncas and Helen Whitaker Professor of Mechanical Engineering and Civil and Environmental Engineering at MIT. “It’s a test of feasibility in scaling up this water harvesting technology. Now people can build it even larger, or make it into parallel panels, to supply drinking water to people and achieve real impact.”

Zhao and his colleagues present the details of the new water harvesting design in a paper appearing in the journal Nature Water. The study’s lead author is former MIT postdoc “Will” Chang Liu, who is currently an assistant professor at the National University of Singapore (NUS). MIT co-authors include Xiao-Yun Yan, Shucong Li, and Bolei Deng, along with collaborators from multiple other institutions.

Carrying capacity

Hydrogels are soft, porous materials that are made mainly from water and a microscopic network of interconnecting polymer fibers. Zhao’s group at MIT has primarily explored the use of hydrogels in biomedical applications, including adhesive coatings for medical implantssoft and flexible electrodes, and noninvasive imaging stickers

“Through our work with soft materials, one property we know very well is the way hydrogel is very good at absorbing water from air,” Zhao says. 

Researchers are exploring a number of ways to harvest water vapor for drinking water. Among the most efficient so far are devices made from metal-organic frameworks, or MOFs — ultra-porous materials that have also been shown to capture water from dry desert air. But the MOFs do not swell or stretch when absorbing water, and are limited in vapor-carrying capacity. 

Water from air

The group’s new hydrogel-based water harvester addresses another key problem in similar designs. Other groups have designed water harvesters out of micro- or nano-porous hydrogels. But the water produced from these designs can be salty, requiring additional filtering. Salt is a naturally absorbent material, and researchers embed salts — typically, lithium chloride — in hydrogel to increase the material’s water absorption. The drawback, however, is that this salt can leak out with the water when it is eventually collected. 

The team’s new design significantly limits salt leakage. Within the hydrogel itself, they included an extra ingredient: glycerol, a liquid compound that naturally stabilizes salt, keeping it within the gel rather than letting it crystallize and leak out with the water. The hydrogel itself has a microstructure that lacks nanoscale pores, which further prevents salt from escaping the material. The salt levels in the water they collected were below the standard threshold for safe drinking water, and significantly below the levels produced by many other hydrogel-based designs. 

In addition to tuning the hydrogel’s composition, the researchers made improvements to its form. Rather than keeping the gel as a flat sheet, they molded it into a pattern of small domes resembling bubble wrap, that act to increase the gel’s surface area, along with the amount of water vapor it can absorb. 

The researchers fabricated a half-square-meter of hydrogel and encased the material in a window-like glass chamber. They coated the exterior of the chamber with a special polymer film, which helps to cool the glass and stimulates any water vapor in the hydrogel to evaporate and condense onto the glass. They installed a simple tubing system to collect the water as it flows down the glass. 

In November 2023, the team traveled to Death Valley, California, and set up the device as a vertical panel. Over seven days, they took measurements as the hydrogel absorbed water vapor during the night (the time of day when water vapor in the desert is highest). In the daytime, with help from the sun, the harvested water evaporated out from the hydrogel and condensed onto the glass. 

Over this period, the device worked across a range of humidities, from 21 to 88 percent, and produced between 57 and 161.5 milliliters of drinking water per day. Even in the driest conditions, the device harvested more water than other passive and some actively powered designs. 

“This is just a proof-of-concept design, and there are a lot of things we can optimize,” Liu says. “For instance, we could have a multipanel design. And we’re working on a next generation of the material to further improve its intrinsic properties.”

“We imagine that you could one day deploy an array of these panels, and the footprint is very small because they are all vertical,” says Zhao, who has plans to further test the panels in many resource-limited regions. “Then you could have many panels together, collecting water all the time, at household scale.”

This work was supported, in part, by the MIT J-WAFS Water and Food Seed Grant, the MIT-Chinese University of Hong Kong collaborative research program, and the UM6P-MIT collaborative research program.

###

Written by Jennifer Chu, MIT News


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.