Article Highlight | 15-Jul-2025

Surface engineering of lipid nanoparticles: targeted nucleic acid delivery and beyond

Higher Education Press

Harnessing surface engineering strategies to functionalize nucleic acid-lipid nanoparticles (LNPs) for improved performance has been a hot research topic since the approval of the first siRNA drug, patisiran, and two mRNA-based COVID-19 vaccines, BNT162b2 and mRNA-1273. Currently, efforts have been mainly made to construct targeted LNPs for organ- or cell-type-specific delivery of nucleic acid drugs by conjugation with various types of ligands. In this review, they describe the surface engineering strategies for nucleic acid-LNPs, considering ligand types, conjugation chemistries, and incorporation methods. They then outline the general purification and characterization techniques that are frequently used following the engineering step and emphasize the specific techniques for certain types of ligands. Next, they comprehensively summarize the currently accessible organs and cell types, as well as the other applications of the engineered LNPs. Finally, they provide considerations for formulating targeted LNPs and discuss the challenges of successfully translating the “proof of concept” from the laboratory into the clinic. They believe that addressing these challenges could accelerate the development of surface-engineered LNPs for targeted nucleic acid delivery and beyond.

 

The work entitled “Surface engineering of lipid nanoparticles: targeted nucleic acid delivery and beyond”was published on Biophysics Reports (published on Oct. 2023).

 

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.