News Release

Removing yellow stains from fabric with blue light

Peer-Reviewed Publication

American Chemical Society

Removing yellow stains from fabric with blue light

image: 

Exposing a sweat-like stain on cotton (left image) to a blue LED light for 10 minutes significantly removed the yellow color (right image).

view more 

Credit: Tomohiro Sugahara

Sweat and food stains can ruin your favorite clothes. But bleaching agents such as hydrogen peroxide or dry-cleaning solvents that remove stains aren’t options for all fabrics, especially delicate ones. Now, researchers in ACS Sustainable Chemistry & Engineering report a simple way to remove yellow stains using a high-intensity blue LED light. They demonstrate the method’s effectiveness at removing stains from orange juice, tomato juice and sweat-like substances on multiple fabrics, including silk.

“Our method utilizes visible blue light in combination with ambient oxygen, which acts as the oxidizing agent to drive the photobleaching process,” says Tomohiro Sugahara, the study’s corresponding author. “This approach avoids the use of harsh chemical oxidants typically required in conventional bleaching methods, making it inherently more sustainable.”

Yellow clothing stains are caused by squalene and oleic acid from skin oils and sweat, as well as natural pigments like beta carotene and lycopene, present in oranges, tomatoes and other foods. UV light is a potential stain-removing alternative to chemical oxidizers like bleach and hydrogen peroxide, but it can damage delicate fabrics. Sugahara and Hisanari Yoneda previously determined that a high-intensity blue LED light could remove yellow color from aged resin polymers, and they wanted to see whether blue light could also break down yellow stains on fabric without causing damage.

Initially, they exposed vials of beta-carotene, lycopene and squalene to high-intensity blue LED light for three hours. All the samples lost color, and spectroscopic analyses indicated that oxygen in the air helped the photobleaching process by breaking bonds to produce colorless compounds. Next, the team applied squalene onto cotton fabric swatches. After heating the swatches to simulate aging, they treated the samples for 10 minutes, by soaking them in a hydrogen peroxide solution or exposing them to the blue LED or UV light. The blue light reduced the yellow stain substantially more than the hydrogen peroxide or UV exposure. In fact, UV exposure generated some new yellow-colored compounds. Additional tests showed that the blue LED treatment lightened squalene stains on silk and polyester without damaging the fabrics. The method also reduced the color of other stain-causing substances, including aged oleic acid, orange juice and tomato juice, on cotton swatches.

High-intensity blue LED light is a promising way to remove clothing stains, but the researchers say they want to do additional colorfastness and safety testing before commercializing a light system for home and industrial use.

The authors do not have an external funding source for this work. They are employed by Asahi Kasei Corporation, a company that develops fiber products, chemicals and electronic materials.

###

The American Chemical Society (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

Registered journalists can subscribe to the ACS journalist news portal on EurekAlert! to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.

Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.

Follow us: Facebook | LinkedIn | Instagram


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.