IL1RA+ myeloid-derived suppressor cells activate epithelial-mesenchymal transition to facilitate lymphatic and hepatic metastasis in pancreatic ductal carcinoma
Xia & He Publishing Inc.
image: IL1RA+ MDSCs represent a key immunosuppressive and pro-tumorigenic subtype in HM/LNP PDAC, providing a solid theoretical basis for prognostic prediction and the development of immunotherapeutic strategies targeting these cells in HM/LNP PDAC.
Credit: Feng Wei, Haijun Li
Background and Aims
Hepatic metastasis (HM) and lymph node metastasis in pancreatic ductal adenocarcinoma (PDAC) are associated with worse overall survival, largely due to the immunosuppressive microenvironment. However, the key immunosuppressive cells within this microenvironment remain inadequately defined. This study aimed to identify the cells contributing to HM and lymph node metastasis in PDAC and to investigate their regulatory mechanisms.
Methods
Single-cell RNA sequencing was used to profile the tumor microenvironment in HM, lymph node-negative, and lymph node-positive (LNP) PDAC tissues. Bioinformatic analyses revealed subtypes of immunosuppressive myeloid-derived suppressor cells (MDSCs). Immunofluorescence and flow cytometry were performed to detect the distribution and proportion of interleukin-1 receptor antagonist (IL1RA+) MDSCs. The immunosuppressive and pro-tumorigenic functions of IL1RA+ MDSCs were analyzed using enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction, Western blotting, and Transwell assays. Patient-derived xenograft mouse models were employed to validate the role of IL1RA+ MDSCs in vivo.
Results
Polymorphonuclear-MDSCs were found to be recruited to metastatic PDAC tissues. Among these, IL1RA+ MDSCs were enriched in HM/LNP tissues and correlated with poorer prognosis. IL1RA+ MDSCs promoted M2 macrophage polarization and suppressed the activity of natural killer cells and cytotoxic T cells. Furthermore, IL1RA+ MDSCs accelerated PDAC migration and progression by upregulating epithelial–mesenchymal transition-related proteins in both in vitro and in vivo models.
Conclusions
IL1RA+ MDSCs have been identified as novel regulatory immune cells that are significantly enriched in the HM and LNP PDAC microenvironment and are associated with poor prognosis. This study confirmed that IL1RA+ MDSCs express high levels of IL1RA and VEGFA and interact with NK cells, T cells, and macrophages to establish an immunosuppressive microenvironment via the IL1 pathway. Furthermore, IL1RA+ MDSCs promote PDAC progression through the VEGF pathway in both in vitro and in vivo models. These findings highlight the potential of targeting IL1RA+ MDSCs in the TME as a promising therapeutic strategy for PDAC.
Full text
https://www.xiahepublishing.com/2310-8819/JCTH-2025-00416
The study was recently published in the Journal of Clinical and Translational Hepatology.
The Journal of Clinical and Translational Hepatology (JCTH) is owned by the Second Affiliated Hospital of Chongqing Medical University and published by XIA & HE Publishing Inc. JCTH publishes high quality, peer reviewed studies in the translational and clinical human health sciences of liver diseases. JCTH has established high standards for publication of original research, which are characterized by a study’s novelty, quality, and ethical conduct in the scientific process as well as in the communication of the research findings. Each issue includes articles by leading authorities on topics in hepatology that are germane to the most current challenges in the field. Special features include reports on the latest advances in drug development and technology that are relevant to liver diseases. Regular features of JCTH also include editorials, correspondences and invited commentaries on rapidly progressing areas in hepatology. All articles published by JCTH, both solicited and unsolicited, must pass our rigorous peer review process.
Follow us on X: @xiahepublishing
Follow us on LinkedIn: Xia & He Publishing Inc.
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.