News Release

Lightweight construction materials of highest stability thanks to their microarchitecture

Lightweight construction materials modeled on nature; high stability at low density; ceramic microstructures produced by 3-D laser writing

Peer-Reviewed Publication

Helmholtz Association

Framework Construction Made of a Ceramic Polymer

image: The framework construction made of a ceramic-polymer composite is highly stable, although the individual elements have a thickness of a few hundred nanometers only. view more 

Credit: Picture: J. Bauer/KIT

This news release is available in German.

KIT researchers have developed microstructured lightweight construction materials of highest stability. Although their density is below that of water, their stability relative to their weight exceeds that of massive materials, such as high-performance steel or aluminum. The lightweight construction materials are inspired by the framework structure of bones and the shell structure of the bees' honeycombs. The results are now presented in the journal PNAS, DOI: 10.1073/pnas.1315147111.

"The novel lightweight construction materials resemble the framework structure of a half-timbered house with horizontal, vertical, and diagonal struts," says Jens Bauer, Karlsruhe Institute of Technology (KIT). "Our beams, however, are only 10 µm in size." In total, the lightweight construction elements are about 50 µm long, wide, and high.

"Nature also uses open-pore, non-massive structures for carrying loads," Oliver Kraft, KIT, explains. Examples are wood and bones. At the same density, however, the novel material produced in the laboratory can carry a much higher load. A very high stability was reached by a shell structure similar to the structure of honeycombs. It failed at a pressure of 28 kg/mm2 only and had a density of 810 kg/m3. This exceeds the stability / density ratio of bones, massive steel, or aluminum. The shell structure produced resembles a honeycomb with slightly curved walls to prevent buckling.

To produce the lightweight construction materials, 3D laser lithography was applied. Laser beams harden the desired microstructure in a photoresist. Then, this structure is coated with a ceramic material by gas deposition. The structures produced were subjected to compression via a die to test their stability.

Microstructured materials are often used for insulation or as shock absorbers. Open-pore materials may be applied as filters in chemical industry.

###

High-strength cellular ceramic composites with 3D microarchitecture, Jens Bauer, Stefan Hengsbach, Iwiza Tesari, Ruth Schwaiger, and Oliver Kraft, PNAS Early Edition, DOI: 10.1073/pnas.1315147111

Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. Research activities focus on energy, the natural and built environment as well as on society and technology and cover the whole range extending from fundamental aspects to application. With about 9000 employees, including nearly 6000 staff members in the science and education sector, and 24000 students, KIT is one of the biggest research and education institutions in Europe. Work of KIT is based on the knowledge triangle of research, teaching, and innovation.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.