News Release

Neu entdeckter stoffwechsel bescheinigt hefe evolutionären vorteil

Assumptions and models used in the last 30 years are false

Peer-Reviewed Publication

Austrian Research Centre of Industrial Biotechnology (ACIB)

image: Electronmicroscopy of <I>Pichia pastoris</I> cells: normal yeast cells grown on glucose on the left. Clearly visible peroxisomes (Px), the organelles responsible for assimilation of methanol into cellular biomass on the right. view more 

Credit: acib/University of Graz

Diese Pressemitteilung ist verfügbar auf Englisch.

Doppelte Genkopien sichern der Biotech-Hefe Pichia pastoris das Überleben in Umgebungen, wo nur Methanol als Nahrung vorhanden ist. Der nun aufgeklärte Stoffwechsel ähnelt jenem, den Pflanzen für das Verwerten von Kohlendioxid verwenden.

Hefe ist der am längsten von Menschen genutzte Mikroorganismus der Welt. Brot, Bier, Wein - all das gäbe es ohne Hefearten wie Saccharomyces cerevisiae (unsere Bäckerhefe) nicht. Aus der Biotechnologie ist Hefe als Zellfabrik nicht mehr wegzudenken. Wertvolle Produkte vom Enzym bis zu pharmazeutischen Wirkstoffen werden industriell mit Hefe hergestellt. Die Biotechnologie setzt vor allem auf Pichia pastoris.

Wegen ihres langen und vielfältigen Einsatzes gehört Hefe zu den am besten untersuchten Organismen überhaupt. Pichia pastoris ist nebenbei ein wissenschaftlich gerne genutzter Modellorganismus zum Untersuchen von Zellstrukturen. Alles schien bekannt - bis heuer. Denn ForscherInnen des Austrian Centre of Industrial Biotechnology (acib) und der Universität für Bodenkultur Wien (BOKU) haben einen neuen Stoffwechselweg aufgeklärt, der die Hefe Pichia pastoris einzigartig macht. „Wir konnten zeigen, dass die Annahmen und Modelle, die in den letzten 30 Jahren verwendet wurden, nicht stimmen", erklärt Prof. Diethard Mattanovich (BOKU Wien und Leiter des Forschungsfeldes „Systembiologie & Mikrobielles Zellengineering" beim acib).

Dabei geht es um Methanol als „Futter". Hefen wie Pichia pastoris sind wie nur wenige Mikroorganismen in der Lage, diesen einfachen Alkohol als Nahrung zu verwerten. Mattanovich: „Zu Nutze machen sich die Zellen das zum Beispiel, wenn sie in der Natur im Saft von Bäumen wachsen, wo Methanol zugegen ist."

Die ForscherInnen rund um Projektleiterin Dr. Brigitte Gasser entdeckten erstaunliche Ähnlichkeiten mit Pflanzen. Diese verwenden Kohlendioxid (CO2) als Nahrung und verwerten das Klimagas in Zellorganellen namens Chloroplasten. Letztendlich wird CO2 zu Biomasse. Pichia arbeitet ähnlich: Die Hefe setzt Methanol, das so wie CO2 aus einem Kohlenstoffatom besteht, in einer Zellorganelle namens Peroxisom um. Entscheidend bei beiden Prozessen sind die Knüpfung von Bindungen zwischen Kohlenstoffatomen und die Umlagerung in Zucker und andere Substanzen, die für den Aufbau der Biomasse notwendig sind. „Bisher wusste man nicht, wo in der Zelle und mittels welcher Gene diese Umlagerungen ablaufen", so Brigitte Gasser.

Ebenso wenig wusste man um die genetische Codierung dieses Stoffwechsels. Die meisten Zellen verfügen über ein Gen pro Protein und Schritt im Stoffwechsel. Pichia liegt evolutionär auf der sicheren Seite. Alle Gene für den Methanol-Umsatz sind doppelt vorhanden, haben die 13 ForscherInnen um Mattanovich und Gasser herausgefunden, die am Forschungsprojekt beteiligt waren. Die Gene verfügen nicht nur über eine genetische Zusatzinformation, damit die entsprechenden Reaktionen im Peroxisom ablaufen. Sie werden erst aktiv, wenn Methanol als Nahrungsquelle vorhanden ist.

Für diese Entdeckungen haben die ForscherInnen auf den gesamten Datenfundus zurückgegriffen, der bei biotechnologischer Verbesserungen von Pichia pastoris am acib und an der BOKU in den letzten Jahren entstanden ist. „Die Interpretation unserer systembiologischen Daten revolutioniert das Verständnis der Zellbiologie", freut sich Brigitte Gasser über das neue Wissen um Lebensvorgänge auf unserer Erde. Die Arbeit wurde kürzlich im renommierten Journal BMC Biology veröffentlicht. Die Ergebnisse belegen die Vorreiterrolle der Wiener ForscherInnen, wenn es um die Biotech-Hefe Pichia pastoris geht.

###

Systems-level organization of yeast methylotrophic lifestyle, Rußmayer et al. 2015. BMC Biology 13:80, http://www.biomedcentral.com/1741-7007/13/80


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.