News Release

Quantum computers learn to mark their own work

Peer-Reviewed Publication

University of Warwick

  • Quantum computers can potentially answer questions beyond the capabilities of classical computing - but their answers might not be reliable
  • University of Warwick scientists have developed a protocol for quantum computers to measure how close their answers are to the correct ones
  • Checking whether these answers are correct using classical methods is extremely resource-intensive
  • Could be used in confirming whether a quantum computer has outperformed classical computers, so-called quantum supremacy

A new test to check if a quantum computer is giving correct answers to questions beyond the scope of traditional computing could help the first quantum computer that can outperform a classical computer to be realised.

By creating a protocol that allows a quantum computer to check its own answers to difficult problems, the scientists from the University of Warwick have provided a means to confirm that a quantum computer is working correctly without excessive use of resources.

Samuele Ferracin, Theodoros Kapourniotis and Dr Animesh Datta from the University's Department of Physics have recently tackled this problem in a paper for The New Journal of Physics, published today (18 November).

The researchers have developed a protocol to quantify the effects of noise on the outputs of quantum computers. Noise is defined as anything that affects a quantum machine's hardware but is beyond the user's control, such as fluctuations in temperature or flaws in the fabrication. This can affect the accuracy of a quantum computer's results.

When applied, the researchers' test produces two percentages: how close it estimates the quantum computer is to the correct result and how confident a user can be of that closeness.

The test will help the builders of quantum computers to determine whether their machine is performing correctly to help refine their performance, a key step in establishing the usefulness of quantum computing in the future.

Dr Animesh Datta from the University of Warwick Department of Physics said: "A quantum computer is only useful if it does two things: first, that it solves a difficult problem; the second, which I think is less appreciated, is that it solves the hard problem correctly. If it solves it incorrectly, we had no way of finding out. So what our paper provides is a way of deciding how close the outcome of a computation is to being correct."

Determining whether a quantum computer has produced a correct answer to a difficult problem is a significant challenge as, by definition, these problems are beyond the scope of an existing classical computer. Checking that the answer it has produced is correct typically involves using a large number of classical computers to tackle the problem, something that is not feasible to do as they tackle ever more challenging problems.

Instead, the researchers have proposed an alternative method that involves using the quantum computer to run a number of easy calculations that we already know the answer to and establishing the accuracy of those results. Based on this, the researchers can put a statistical boundary on how far the quantum computer can be from the correct answer in the difficult problem that we want it to answer, known as the target computation.

It is a similar process to that which computer programmers use to check large computer programs, by putting in small functions with known answers. If the program answers enough of these correctly then they can be confident that the whole program is correct.

Dr Datta adds: "The whole point of having a quantum computer is to not spend an exponential amount of time solving problems, so taking an exponential amount of time to check whether it's correct or not defeats the point of it. So our method is efficient in that it doesn't require an exponential amount of resources.

"We do not need a classical computer to check our quantum computer. Our method is self-contained within a quantum system that can be used independently of large servers."

Lead author Samuele Ferracin has been developing ways for scientists working on quantum computers to incorporate the test into their work. He said: "We have spent the last few years thinking about new methods to check the answers of quantum computers and proposing them to experimentalists. The first methods turned out to be too demanding for the existing quantum computers, which can only implement 'small' computations and perform restricted tasks. With our latest work we have successfully developed a method that suits existing quantum computers and encompasses all their main limitations. We are now collaborating with experimentalists to understand how it performs on a real machine."

Quantum computing harnesses the unusual properties of quantum physics to process information in a wholly different way to conventional computers. Taking advantage of the behaviour of quantum systems, such as existing in multiple different states at the same time, this radical form of computing is designed to process data in all of those states simultaneously, lending it a huge advantage over classical computing. Certain kinds of problems, like those found in codebreaking and in chemistry, are particularly suited to exploiting this property.

The last few years have seen unprecedented experimental advances. The largest quantum computers are doubling in size every six months and seem now very close to achieve quantum supremacy. Quantum supremacy refers to a milestone in the development of quantum computers, where a quantum computer first performs a function that would require an unreasonably large amount of time using a classical computer.

Dr Datta adds: "What we are interested in is designing or identifying ways of using these quantum machines to solve hard problems in physics and chemistry, to design new chemicals and materials, or identify materials with interesting or exotic properties. And that is why we are particularly interested in the correctness of the computation."


The research was supported by the Engineering and Physical Sciences Research Council, part of UK Research and Innovation, in the UK.

  • 'Accrediting outputs of noisy intermediate-scale quantum computing devices' is published in the New Journal of Physics, DOI: 10.1088/1367-2630/ab4fd6

Notes to editors:

For interviews or a copy of the paper contact:

Alice Scott
Media Relations Manager - Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221

About the NQIT Hub

The Networked Quantum Information Technologies Hub (NQIT), a consortium led by Oxford University and including the universities of Bath, Cambridge, Edinburgh, Leeds, Southampton, Strathclyde, Sussex and Warwick, is primarily focused on the development of quantum computing hardware, and represents the UK's strongest option for leading the world into the next era of computing. NQIT is working towards building a quantum computer demonstrator which demonstrates a networked, hybrid light-matter approach to quantum information processing. As of December 2019, the NQIT Hub will be succeeded by the Quantum Computing and Simulation (QCS) Hub, which will continue this work to develop a quantum computer demonstrator.

About the UK National Quantum Technologies Programme

NQIT is part of the National Quantum Technologies Programme, part of the UK National Quantum Technologies Programme (UKNQT), is a £270 million investment by the UK government to establish a quantum technology industry in the UK. It is designed to foster the translation of quantum science into commercial technological applications, with the aim of boosting the UK economy and resulting in demonstrable effects across all spheres of everyday life.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.