News Release

Twisted light waves sent across Vienna

Peer-Reviewed Publication

IOP Publishing

Experiment Performed Over the City of Vienna

image: The 3 kilometer free-space experiment was performed in the city of Vienna, from ZAMG (Zentralanstalt für Meteorologie und Geodynamik, Central Institute for Meteorology and Geodynamics) to our institute IQOQI. Picture of an alignment laser from IQOQI to ZAMG, captured at ZAMG. view more 

Credit: <i>New Journal of Physics<i/>/IOP Publishing

A group of researchers from Austria have sent twisted beams of light across the rooftops of Vienna.

It is the first time that twisted light has been transmitted over a large distance outdoors, and could enable researchers to take advantage of the significant data-carrying capacity of light in both classical and quantum communications.

The results of the experiment have been published today, 12 November, in the Institute of Physics and German Physical Society's New Journal of Physics, and are accompanied by a video abstract, which can viewed here - (Note: the video is currently unlisted and remains under embargo alongside the story).

Previous research has shown that if a beam of a certain colour, or wavelength, of light is twisted into a corkscrew shape, the number of channels that data can be transmitted through can be drastically increased. Instead of using one wavelength of light as one channel of communication, the light can be theoretically twisted with an infinite number of turns, with each configuration acting as a single communication channel.

This twisting characteristic, known as orbital angular momentum (OAM), has been exploited by researchers in the past, with some showing that it can be used to transmit 2.5 terabits of data per second--the carrying capacity of more than 66 DVDs--through an optical fibre.

Yet optical fibres are not always suitable, or available, for certain types of communication where light is used--such as Earth to satellite communications--so researchers have been trying to send twisted light over free space whilst at the same time avoiding disturbances from air turbulence. So far, this has only been achieved over small distances in the lab.

In the current study, the researchers, from the University of Vienna and the Institute for Quantum Optics and Quantum Information, used a green laser beam to send twisted light through a lens on top of a radar tower at the Central Institute for Meteorology and Geodynamics in Vienna.

The researchers sent 16 different twisted configurations of a specific wavelength of light to a receiver 3 km away at the University of Vienna. A camera was used to capture the beams of light and an artificial neural network was deployed to reveal the pattern and remove any possible disturbances that may have been caused by air turbulence.

After distinguishing and characterising the 16 different patterns, the researchers then encoded the light with real information-- grey-scale images of Wolfgang-Amadeus Mozart, Ludwig Boltzmann and Erwin Schrödinger.

Co-author of study Mario Krenn said: "We have shown for the first time that information can be encoded onto twisted light and sent through a 3 km intra-city link with strong turbulences.

"The OAM of light is theoretically unbounded, meaning that one has, in theory, an unlimited amount of different distinguishable states in which light can be encoded. It is envisaged that this additional degree of freedom could significantly increase data-rates in classical communication."

Krenn and his co-authors also believe that the OAM of light can be used in quantum communication experiments, whereby a secret key made from a string of polarised, or "spinning", photons--individual particles of light--is passed between two individuals to protect data they want to share with each other.

The laws of physics dictate that any attempt by an eavesdropper to intercept the key and try and measure the "spin" of the photons will inherently alter the spin and thus destroy the secret key.

This type of quantum communication has subsequently been labelled as "unbreakable" and Krenn believes that the use of the OAM of light can make secret keys even tougher to crack.

"Quantum communication could profit greatly from the almost infinite number of OAM states. Each single photon can carry an OAM number, thus carrying more information than just one spin, or polarisation, as is common in the most recently proposed quantum experiments," Krenn continued.

"A higher information density could make the secret key more robust against several side-channel attacks by eavesdroppers, which is, of course, a serious problem as we have seen in recent months."

Timeline of the twist

1992: Researchers begin to study the orbital angular momentum of light (

2004: The first successful transmission of data using twisted light in the lab (

2012: Twisted microwaves are sent 450 m over free space (

2012: Researchers transmit terabits of data per second using the OAM of light (

2013: Terabits of data per second are transmitted in a specialised optical fibre using the OAM of light (

2014: Two photons are entangled with 103 dimensions using the OAM of light (

From Wednesday 12 November, this paper can be downloaded from


Notes to Editors


1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop: Tel: 0117 930 1032 E-mail: For more information on how to use the embargoed material above, please refer to our embargo policy.

IOP Publishing Journalist Area

2. The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week. Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email Michael Bishop, IOP Press Officer,, with your name, organisation, address and a preferred username.

Communication with spatially modulated light through turbulent air across Vienna

3. The published version of the paper 'Communication with spatially modulated light through turbulent air across Vienna' (Krenn M et al 2014 New J. Phys. 16 113028) will be freely available online from Wednesday 12 November. It will be available at

New Journal of Physics

4. New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.

IOP Publishing

5. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.

Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of books, community websites, magazines, conference proceedings and a multitude of electronic services.

IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.

Access to Research

6. Access to Research is an initiative through which the UK public can gain free, walk-in access to a wide range of academic articles and research at their local library. This article is freely available through this initiative. For more information, go to

The Institute of Physics

7. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

In September 2013, we launched our first fundraising campaign. Our campaign, Opportunity Physics, offers you the chance to support the work that we do.

The German Physical Society

8. The German Physical Society (DPG), with a tradition extending back to 1845, is the largest physical society in the world with more than 59,000 members. The DPG sees itself as the forum and mouthpiece for physics and is a non-profit organisation that does not pursue financial interests. It supports the sharing of ideas and thoughts within the scientific community, fosters physics teaching and would also like to open a window to physics for all those with a healthy curiosity.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.