News Release

A study by MSU scientists will help specify the models of the Earth atmosphere circulation

Peer-Reviewed Publication

Lomonosov Moscow State University

Fig. 1 Couette Spherical Flow

image: An experimental set-up for modeling the Couette spherical flow. view more 

Credit: Courtesy of Dmitry Zhilenko.

The Couette spherical flow is the flow of liquid in a spherical layer caused by the rotation of its borders. In a laboratory setting it is studied using two transparent spheres: the outer one is fixed and the inner one rotates at a given speed. This model helps to describe large scale movements of the atmosphere, oceans, and mantle of the Earth caused by the planet's rotation. All these natural processes are usually turbulent. The first step to turbulence is the loss of stability by a permanent flow causing vortexes to spontaneously appear in liquids or gases. But what affects the stability and determines further flow regime (e.g. the number of vortexes in the flow)? After answering this question scientists will be able to better predict climate changes on the Earth.

The regime of the Couette flow is determined by the history of its development including the value of acceleration with which the rotation speed of the internal sphere changes. This value determines whether there are three or four vortexes forming in the flow. However, there are no stable rotation speeds or accelerations in natural processes, and random variations happen quite often. A team of scientists from the Institute of Mechanics, MSU decided to demonstrate in a new experiment how the flow regime may be influenced by random fluctuations in the rotation speed or by noises. The experimenters amplified the noises on purpose to see what happens with the flow. The number of vortexes in the liquid was determined both by naked eye (using aluminum dust particles for visualization) and by means of measuring the flow speed with the laser Doppler anemometer.

The results of the experiments were more complex than the researchers could have suggested. Random fluctuations and liquid flow regimes actually have a correlation between them, but it is nonlinear. When the noises were not excessive, the flow demonstrated three vortexes. The same scenario was observed when there were no noises at all. Next, when the noise levels were high, the liquid seemed to "forget" the influence of acceleration, and four vortexes were formed in the flow. But when the scientists observed the most complex situation, where the noise levels were average, they found the numbers of vortexes are dependent both on the acceleration value and the noise level, and this dependence is nonlinear.

"It is still to be found out how medium-amplitude noises affect the flow," says Dmitry Zhilenko, a co-author of the work, and a senior research associate of the Institute of Mechanics. "This will help to evaluate the influence of noises on the processes in various natural bodies: pulsars, the atmosphere of the Earth, and atmospheres of other planets. For example, some studies suggest that random fluctuations in the inflow of heat into the atmosphere from the Sun may change the element of atmospheric circulation: Hadley, Ferrel, and polar cells. These cells resemble rings with closed air circulation loops, and the climate of the whole planet directly depends on the atmospheric circulation in them."


The work was carried out in collaboration with the scientists from the Ural Federal University, the University of Helsinki, and the University of Oxford. The foreign co-authors participated in the processing and discussing of experimental results.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.