News Release

New forensic technique for analyzing lipstick traces

Peer-Reviewed Publication

University of Kent

Using a technique called Raman spectroscopy, which detects laser light, forensic investigators will be able to analyse lipstick marks left at a crime scene, such as on glasses, a tissue, or cigarette butts, without compromising the continuity of evidence as the sample will remain isolated.

Analysis of lipstick traces from crime scenes can be used to establish physical contact between two individuals, such as a victim and a suspect, or to place an individual at a crime scene.

The new technique is particularly significant for forensic science as current analysis of lipstick traces relies on destructive forensic techniques or human opinion.

Professor Michael Went of the University's School of Physical Sciences said: 'Continuity of evidence is of paramount importance in forensic science and can be maintained if there is no need to remove it from the bag. Raman spectroscopy is ideal as it can be performed through transparent layers, such as evidence bags. For forensic purposes Raman spectroscopy also has the advantages that microscopic samples can be analysed quickly and non-destructively.'

Raman spectroscopy is a process involving light and vibrational energy of chemical bonds. When a material - in this case lipstick - scatters light, most of the light is scattered at its original wavelength but a very small proportion is scattered at altered wavelengths due to changes in vibrational energy of the material's molecules. This light is collected using a microscope to give a Raman spectrum which gives a characteristic vibrational fingerprint which can be compared to spectra of lipsticks of various types and brands. Hence it is possible to determine identity of the lipstick involved.

Research into applying the same method on other types of cosmetic evidence, such as foundation powders, eye-liners and skin creams is also underway.

###

The study, titled 'Application of Raman spectroscopy for the differentiation of lipstick traces', Fatma Salahioglu, Michael J. Went and Stuart J. Gibson, is published in the Royal Society of Chemistry journal.

For further information or interview requests contact

Katie Scoggins in the Press Office at the University of Kent
Tel: 01227 823100/823581
Email: K.Scoggins@kent.ac.uk

News releases can also be found at http://www.kent.ac.uk/news

University of Kent on Twitter: http://twitter.com/UniKent

Note to editors

The University of Kent – the UK's European University – was established at Canterbury in 1965. It has almost 20,000 students and operates campuses or study centres at Canterbury, Medway, Tonbridge, Brussels, Paris, Athens and Rome. It has long-standing partnerships with more than 100 major European universities and many others across the world, including institutions in Argentina, China, Japan, USA, Canada, Malaysia and Peru.

Kent is one of the few universities to be consistently rated by its own students as one of the best in the UK for the quality of its teaching and academic provision. This includes its 3rd place for overall student satisfaction in the 2012 National Student Survey. It was also ranked 20th in the 2014 Guardian University Guide, 28th in the Sunday Times University League Table 2013, and 28th in the Complete University Guide 2014.

In the 2008 Research Assessment Exercise, Kent placed 24th out of 159 participating institutions in the UK for its world-leading research, while 97% of its academic staff work in schools or centres where the research is rated as either internationally or nationally excellent.

It is worth £0.6 billion to the economy of the South East, with its students contributing £211 million to that total. The University also supports directly or indirectly almost 6,800 jobs in the South East (source: Viewforth Consulting, 2009-10).

In 2012, Kent launched a campaign to celebrate its 50th anniversary.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.