News Release

Deforestation linked to rise in cases of emerging zoonotic malaria

Research suggests environmental changes are driving increase in Plasmodium knowlesi malaria -- an infection usually found only in monkeys -- among people in Malaysia

Peer-Reviewed Publication

London School of Hygiene & Tropical Medicine

A steep rise in human cases of P. knowlesi malaria in Malaysia is likely to be linked to deforestation and associated environmental changes, according to new research published in Emerging Infectious Diseases. The study, led by the London School of Hygiene & Tropical Medicine, is the first to explore how changes in land use are impacting the emergence of the disease.

Plasmodium knowlesi is a zoonotic malaria parasite, transmitted between hosts by mosquitoes, which is common in forest-dwelling macaque monkeys. Although only recently reported in humans, it is now the most common form of human malaria in many areas of Malaysia, and has been reported across southeast Asia. [1] In recent years, Malaysia has seen widespread deforestation alongside rapid oil palm and other agricultural expansion. It is thought changes in the way land is used could be a key driver in the emergence of P. knowlesi, but until now this has not been investigated in detail.

The study focused on the Kudat and Kota Marudu districts in Sabah, Malaysia, covering an area of more than 3,000km² with a population of approximately 120,000 people. Researchers used hospital records for 2008-2012 to collect data on the number of P. knowlesi malaria cases from villages in the districts. Information collected from satellite data helped the team to map the local forest, land use, and environmental changes around 450 villages, in order to correlate how these changes might affect human infection.

They found that the number of P. knowlesi cases was strongly linked to deforestation in areas surrounding the villages. This could be explained by a number of factors, including humans coming into closer contact with the forest inhabited by the macaques and the mosquito vectors, due to employment in tree clearance and expanding agriculture. Another factor could be that as land use changes in this way, macaque populations are becoming more densely concentrated in areas of forest where humans are present.

Lead author Kimberly Fornace, Research Fellow at the London School of Hygiene & Tropical Medicine, said: "The dramatic rise in the number of P. knowlesi malaria cases in humans in Malaysia in the past ten years has been most common in areas with deforestation, as well as areas that are close to patches of forest where humans, macaques and mosquitoes are coming into closer and more frequent contact. This suggests that there is a higher risk of P. knowlesi transmission in areas where land use is changing, and this knowledge will help focus efforts on these areas and also predict and respond to future outbreaks. Given our findings, we view deforestation as having distinct public health consequences which need to be urgently addressed."

The findings show the study region had undergone significant environmental changes, with many villages substantially affected by deforestation. During the five-year study alone, 39% of the region's villages lost more than 10% of the forest cover in their surrounding 1km radius, and half of villages lost more than 10% within a 5km radius. Overall, forest cover in Kudat and Kota Marudu declined by 4.8% during the study period.

The findings also confirmed that P. knowlesi is the most common cause of human malaria cases in the region.

The authors note that some cases of malaria may have been unreported as they were asymptomatic or resolved without treatment. P. knowlesi can be mistaken for other forms of human malaria in microscope diagnosis, however the authors adjusted for this uncertainty in the study. They also highlight that the environmental data were limited as they could not discriminate between types of forest or crops, meaning further work is needed to investigate whether vegetation type is a risk factor for P. knowlesi.


This study was funded by the Biotechnology and Biosciences Research Council, Economic and Social Research Council, Medical Research Council, and Natural Environment Research Council, through the Environmental and Social Ecology of Human Infectious Diseases Initiative (ESEI).

Notes to Editors

Kimberly M Fornace, Tommy Rowel Abidin, Neal Alexander, Paddy Brock, Matthew J Grigg, Amanda Murphy, Timothy William, Jayaram Menon, Chris J Drakeley and Jonathan Cox. Association between landscape factors and spatial patterns of emergent Plasmodium knowlesi infections in Sabah, Malaysia. Emerging Infectious Diseases. DOI: 10.3201/eid2202.150656

Once the embargo lifts the paper will be available online at the following link:

[1] In the Malaysian state of Sabah, suspected P. knowlesi made up just 2% of all malaria cases in 2004, rising steeply to 62% of all cases in 2013.

This research was carried out with the following collaborating institutions: Infectious Disease Society Kota Kinabalu Sabah, Malaysia; Hospital Queen Elizabeth Clinical Research Centre, Malaysia; Menzies School of Health Research, Australia; Sabah Department of Health, Malaysia; and the University of Glasgow, UK.

Monkeybar is funded by a £2.9m grant from four UK research councils (BBSRC, ESRC, NERC & MRC). Led by researchers from the London School of Hygiene & Tropical Medicine, the work is being conducted with research partners from the University of Glasgow, the Liverpool School of Tropical Medicine and the Royal Veterinary College in the UK; the University of the Philippines Los Baños and Research Institute for Tropical Medicine in the Philippines; the Infectious Disease Society Kota Kinabalu Sabah, Queen Elizabeth Hospital/Ministry of Health, Universiti Malaysia Sabah, University of Malaya and the Danau Girang Field Centre/Sabah Wildlife Department in Malaysia; and the Menzies School of Health Research in Australia.

About the London School of Hygiene & Tropical Medicine

The London School of Hygiene & Tropical Medicine is a world-leading centre for research and postgraduate education in public and global health, with 3,900 students and more than 1,000 staff working in over 100 countries. The School is one of the highest-rated research institutions in the UK, and among the world's leading schools in public and global health. Our mission is to improve health and health equity in the UK and worldwide; working in partnership to achieve excellence in public and global health research, education and translation of knowledge into policy and practice.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.