News Release

Bats recognize the individual voices of other bats

Peer-Reviewed Publication

PLOS

Bats can use the characteristics of other bats' voices to recognize each other, according to a study by researchers from the University of Tuebingen, Germany and the University of Applied Sciences in Konstanz, Germany. The study, published June 5 in the open-access journal PLoS Computational Biology, explains how bats use echolocation for more than just spatial knowledge.

The researchers first tested the ability of four greater mouse-eared bats to distinguish between the echolocation calls of other bats. After observing that the bats learned to discriminate the voices of other bats, they then programmed a computer model that reproduces the recognition behaviour of the bats. Analysis of the model suggests that the spectral energy distribution in the signals contains individual-specific information that allows one bat to recognize another.

Animals must recognize each other in order to engage in social behaviour. Vocal communication signals are helpful for recognizing individuals, especially in nocturnal organisms such as bats. Little is known about how bats perform strenuous social tasks, such as remaining in a group when flying at high speeds in darkness, or avoiding interference between echolocation calls. The finding that bats can recognize other bats within their own species based on their echolocation calls may therefore have some significant implications.

###

FINANCIAL DISCLOSURE: This work was funded by SFB 550, by the Graduiertenkolleg Neurobiologie. It was supported in part by the IST Program of the European Community, under the PASCAL network of excellence, IST-2002-506778. This work was also supported by the human resources and mobility activity Marie Curie host fellowships for early stage research training under contract MEST-CT-2004-504321 PERACT by the European Union. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

COMPETING INTERESTS: The authors have declared that no competing interests exist.

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.plos.org/10.1371/journal.pcbi.1000400 (link will go live upon embargo lift)

CITATION: Yovel Y, Melcon ML, Franz MO, Denzinger A, Schnitzler H-U (2009) The Voice of Bats: How Greater Mouse-eared Bats Recognize Individuals Based on Their Echolocation Calls. PLoS Comput Biol 5(6): e1000400. doi:10.1371/journal.pcbi.1000400

CONTACT:

Dr. Yossi Yovel
Weizmann institute of science (current affiliation)
phone: 97289346304
cell: 972506463642
email: yossiyovel@hotmail.com


Disclaimer

This press release refers to an upcoming article in PLoS Computational Biology. The release is provided by the article authors. Any opinions expressed in this release or article are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Computational Biology

PLoS Computational Biology (www.ploscompbiol.org) features works of exceptional significance that further our understanding of living systems at all scales through the application of computational methods. All works published in PLoS Computational Biology are open access. Everything is immediately available subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.