News Release

Femtosecond spectroscopy and first-principles calculations shed light on compositional dependence of

Peer-Reviewed Publication

Skolkovo Institute of Science and Technology (Skoltech)

Researchers from Skoltech and Ludwig Maximilians-Universität (LMU) in Germany have studied the fundamental properties of halide perovskite nanocrystals, a promising class of optoelectronic materials. Using a combination of theory and experiment, they were able to show and explain an intricate connection between composition, light-induced lattice dynamics, and stability of the materials. The paper was published in the journal Nature Communications.

Perovskite nanocrystals (PNCs) are semiconductor nanocrystals that, thanks to their unique properties, have found a number of applications in optoelectronics, for instance, in lasers and LEDs. PNCs have a much higher photoluminescence quantum yield compared to bulk materials. Moreover, at nanoscale the quantum-confinement can be achieved, which could be used as an additional means of tuning optical properties of such materials. Metal halide perovskites have electronic properties that make the optical properties of nanocrystals made from these materials more tolerant to defects than other semiconducting materials.

Assistant Professor at the Skoltech Center for Energy Science and Technology (CEST) Sergey Levchenko and his colleagues used atomistic modelling to explain the results of femtosecond pump-probe spectroscopy, a method that allows to observe lattice dynamics in real time. They studied the coherent lattice vibrational dynamics - how atomic structure of PNCs evolves after excitation with a laser pulse with a duration shorter than the period of vibrational modes -- for hybrid halide PNCs.

They found, among other things, that energy transfer between vibrational modes in iodine-based perovskite nanocrystals is much more pronounced than in bromine-based ones due to a difference in interaction between the inorganic framework and the organic moiety in organic-inorganic halide PNCs.

"These results pave the way to a rational control over fundamental properties of such PNCs, including energy transfer upon optical excitation and charge-carrier relaxation, via compositional changes," Levchenko says.


Skoltech is a private international university located in Russia. Established in 2011 in collaboration with the Massachusetts Institute of Technology (MIT), Skoltech is cultivating a new generation of leaders in the fields of science, technology and business, is conducting research in breakthrough fields, and is promoting technological innovation with the goal of solving critical problems that face Russia and the world. Skoltech is focusing on six priority areas: data science and artificial intelligence, life sciences, advanced materials and modern design methods, energy efficiency, photonics and quantum technologies, and advanced research. Web:

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.