News Release

Bigelow Laboratory in international effort to develop marine microbial ecology model

Moore Foundation launches Marine Microbiology Initiative with grants to 100 scientists across 33 institutions

Grant and Award Announcement

Bigelow Laboratory for Ocean Sciences

José Antonio Fernández Robledo, Bigelow Laboratory for Ocean Sciences

image: Bigelow Laboratory for Ocean Sciences scientist José Antonio Fernández Robledo won a Moore grant to develop molecular tools for ocean systems. view more 

Credit: Bigelow Laboratory for Ocean Sciences

Dinoflagellates are single-celled marine organisms that use two (dino) whip-like organs called flagella (flagellates) to propel themselves in water. They are distributed throughout the global ocean and are the first link in the aquatic food chain--the initial transfer of light energy to chemical energy (photosynthesis). Almost all other organisms are dependent upon this energy transfer for their subsequent existence.

Bigelow Laboratory for Ocean Sciences Senior Research Scientist José Antonio Fernández Robledo will spend the next year developing molecular tools to better understand dinoflagellates' function and how they might transform themselves under varying conditions. This work, being done in collaboration with Dr. Claudio H. Slamovits at Dalhousie University in Halifax Nova Scotia, is part of an $8 million Marine Microbial Initiative launched by the Gordon and Betty Moore Foundation. The Initiative will occur over the next two years supporting the efforts of more than 100 scientists across 33 institutions to collectively tackle the challenge of developing methods to bring experimental model systems to the ocean. Bigelow Laboratory was awarded $150,000 in funding. The genetic tools generated in this effort will allow researchers to investigate the activities of microbial genes to understand how these organisms function in marine ecosystems and provide the capability to ask scientific questions in ways not currently possible.

Model systems, such as the mammalian gut bacterium Escherichia coli for microbiology and the fruit fly and zebra fish for biomedicine, have been invaluable for deciphering complex biology. For example, by studying fruit flies, scientists gain insight into the inheritance of human traits such as eye color. But in the world of marine microbial ecology, there are very few model systems and associated tools that enable scientists to deeply explore the physiology, biochemistry, and ecology of marine microbes, which are key drivers of the ocean's elemental cycles, influence greenhouse gas levels, and support marine food webs.

Ginger Armbrust, Ph.D., from the University of Washington explained that an important outcome would be to "expand the community of people that are working on these organisms and making big breakthroughs into how these organisms function." She added, "New model systems will be a magnet for people from outside the field of marine microbial ecology as they will suddenly be able to work with marine microbes in ways that they are used to working with other model organisms."

Currently, researchers have access to powerful tools in biology to help them understand the ocean, such as microscopy and DNA sequencing, but are lacking essential tools in genetics to make robust experimental model systems. Without these tools, scientists are less able to link specific genes to cell behavior or determine how microbes interact within their environment and with one another - critical information for understanding how ocean ecosystems function.

"It is great to be part of this international effort to advance understanding of the marine microbial community and how it might respond to change," said Bigelow Laboratory Scientist Fernández Robledo. "The support from the Moore Foundation will allow us to jump start our genetic capabilities here and help contribute to global ocean understanding."

Bigelow Laboratory for Ocean Sciences, an independent not-for-profit research institution on the coast of Maine, conducts research ranging from microbial oceanography to large-scale ocean processes that affect the global environment. Recognized as a leader in Maine's emerging innovation economy, the Laboratory's research, education, and technology transfer programs are spurring significant economic growth in the state.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.