News Release

Supersense: It's a snap for crocs

Peer-Reviewed Publication

BMC (BioMed Central)

Multi-Sensory Organs in Crocodylians

image: Multi-sensory organs in the skin of crocodylians are sensitive to touch, heat, cold, and the chemicals in their environment, finds research in BioMed Central's open access journal EvoDevo. view more 

Credit: Michel C Milinkovitch

Previously misunderstood multi-sensory organs in the skin of crocodylians are sensitive to touch, heat, cold, and the chemicals in their environment, finds research in BioMed Central's open access journal EvoDevo. These sensors have no equivalent in any other vertebrate.

Crocodylians, the group that includes crocodiles, gharials, alligators and caimans, have particularly tough epidermal scales consisting of keratin and bony plates for added protection. On the head, these scales are unusual because they result from cracking of the hardened skin, rather than their shape being genetically determined.

The scales have sensors known as dome pressure receptors (DPR) or Integumentary Sensory organs (ISOs) with fingertip sensitivity. Researchers from the University of Geneva investigated ISOs in Nile crocodiles (Crocodylus niloticus) and the spectacled caiman (Caiman crocodilus) to find out exactly what these micro-organs can 'see and how they are formed.'.

ISOs appear on the head of the developing caiman and crocodile embryos before the skin starts to crack and form scales. Nile crocodiles additionally develop ISOs all over their body. In both animals the ISOs contain mechano-, thermo-, and chemo-sensory receptor-channels giving them the combined ability to detect touch, heat/cold and chemical stimuli, but not salinity. Nile crocodiles have separate salt glands on their tongues which help regulate osmolarity in hyper-saline environments.

This means that they can detect surface pressure waves allowing them to quickly find prey even in the dark. The thermal sensitivity help them to maintain body temperature by moving between basking in the sun and cooling in the water, and the chemical sensors may help them to detect suitable habitats.

Prof Michel Milinkovitch, who led this study explained, "ISO sensors are remarkable because not only are they able to detect many different types of physical and chemical stimuli, but because there is no equivalent in any other vertebrates. It is this transformation of a diffuse sensory system, such as we have in our own skin, into ISO which has allowed crocodilians to evolve a highly armored yet very sensitive skin."

###

Media Contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com

Notes to Editors

Crocodilians Evolved Scattered Multi-Sensory Micro-Organs
Nicolas Di-Poï and Michel C Milinkovitch
EvoDevo 2013, 4:19

1. Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

2. EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. @BioMedCentral


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.