News Release

How an infectious tumor in Tasmanian devils evolved as it spread

Genomic analysis may help efforts to save this endangered marsupial

Peer-Reviewed Publication


How an Infectious Tumor in Tasmanian Devils Evolved as It Spread

image: A young Tasmanian devil. Tasmanian devils are endangered by devil facial tumour 1 (DFT1), a transmissible cancer. view more 

Credit: Maximilian Stammnitz

A transmissible cancer in the Tasmanian devil has evolved over the past two decades, with some lineages spreading and replacing others, according to a new study in the open access journal PLOS Biology by Young Mi Kwon, Kevin Gori, and Elizabeth Murchison of the University of Cambridge (UK) and colleagues. The evolutionary dynamics of the cancer help explain how this Australian marsupial has become so quickly endangered, and may shed light on the evolution of other forms of cancer.

The Tasmanian devil is a carnivorous marsupial, about the size of a small dog, that is found only in Tasmania, an island state off the southern coast of eastern Australia. Devil facial tumor 1 (DFT1) was first observed in the mid-1990s, and has since spread to devils across much of the island, transmitted from one animal to another through biting, a common social behavior. Remarkably, tumor cells transferred in this way, rather than being eliminated by the new host's immune system, survive and establish a new tumor. Infection is usually fatal.

To understand more about the spread of the disease, the authors analyzed the genomes of 648 DFT1 tumors collected between 2003 and 2018. They found that early on in the spread of the tumor, DFT1 split into five clades, or sublineages. Two of these died out, while three continued to spread. One, clade A, split yet again. The authors mapped the distribution of each clade, which revealed how diseased devils have spread the cancer through the environment; their findings support those from epidemiological research and highlight the importance of geography in influencing the movements of devils and their disease.

Effects of human attempts to prevent spread were also reflected in the data--a pilot program to remove infected animals was likely responsible for a series of sublineage replacements in one isolated region. The authors also identified multiple types of genomic instability in the DFT1 genome, including the duplication and loss of genes and the gain or loss of whole chromosomes; they additionally described the frequency of whole-genome duplication leading to tetraploid tumors. Nonetheless, the degree of genomic diversity within the devil tumor population was small compared to that often found even within a single human tumor, the authors noted.

Largely as a result of the spread of DFT1, and now exacerbated by the emergence of a second transmissible cancer, DFT2, the Tasmanian devil population has dropped precipitously, and the species is now endangered. "The results from this study may be useful for epidemiological modelling and prediction of management intervention benefit," Murchison said.


Peer-reviewed; Observational study; Animals

In your coverage please use these URLs to provide access to the freely available articles in PLOS Biology:

Kwon YM, Gori K, Park N, Potts N, Swift K, Wang J, et al. (2020) Evolution and lineage dynamics of a transmissible cancer in Tasmanian devils. PLoS Biol 18(11): e3000926.

This work was supported by Wellcome grant (102942/Z/13/A) to EPM,; a Philip Leverhulme Prize from the Leverhulme Trust to EPM,; National Science Foundation grant (DEB-1316549) to EPM and MJ,; Eric Guiler Tasmanian Devil Research Grants to EPM,; Australian Research Council grant (DE170101116) to RH,; and a Herchel Smith Postgraduate Fellowship to YMK, The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests:
The authors have declared that no competing interests exist.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.