News Release

Current Graphene Science tours its journey of high-performance energy storage devices

This article by Dr. Ram Gupta et al is published in the journal Current Graphene Science, Volume 1, 2017

Peer-Reviewed Publication

Bentham Science Publishers

Energy serves to be indispensable need for powering electronic devices. Smartphones, laptops, automated logic controlled devices, automobiles and other aerospace devices are profoundly entangled in our daily routine. However, poor cyclic stability, robustness, flexibility, low power and energy has always dwindled its growth. Fortunately, super carbon namely graphene has provided a wide range of possibilities to overcome such drawbacks. Moreover, it has shown enough potential for innovative technologies resulting in generational changes for energy storage application.

Supercapacitors store energy in two ways including surface area and redox reactions. Graphene exfoliation leading to monolayered sp2 hybridized carbon provides high surface area for energy storage while, when hybridized with redox active entities improves its mixed charge storage behavior and provides pseudo-capacitance. This ability has buoyed researchers currently developing critical analysis over wide range of possible energy conservation devices.

Conductive polymers, metal oxides and other carbon hybrids have been effectively composed with graphene to form complex structures and physio-chemical characteristics. Much research was carried out for conductive polymers to be grown over graphene substrate forming varieties of structures using different chemical polymerization pathways. This has led us towards the binder free approach for increased conductivity, flexible electronic devices, thin films, lightweight stretchable and wearable devices and many other possibilities are yet to be realized.

"It is possible to grow multiple nano-hybrid structures over the sheets of graphene, using facile chemical synthesis and dirt-cheap materials. Research should maintain its reputation over practical applicability for real life situation and on-site problem solving so as our research benefits every person" says Sanket Bhoyate, Master Student under guidance of Dr. Ram Gupta and Dr. Pawan Kahol, Pittsburg State University.

"Future potentials of graphene are tuned towards multifunctional devices, catalysts, fast-charge devices, transparent storage devices, light weight, flexible-thin film devices, self-healing capability, longer cyclic stability and eco-friendly devices. This is an exciting pathway concluded from our review. It would be welcoming for all scientists to provide collaborated approach for developing such an enormous research possibilities" adds Gupta.

In conclusion, graphene has made its way as one medicine for possibly one hundred cures, providing efficient answers to generated energy problems and will continue to maintain its potential. It can be said that graphene science is an evergreen area of research for developing new energy devices.


Sanket Bhoyate1, Kwadwo Mensah-Darkwa2, Pawan K. Kahol3, Ram K. Gupta1

1Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA

2Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

3Department of Physics, Pittsburg State University, Pittsburg, KS 66762, USA

Reference: Gupta, R.; (2017). Recent development on Nanocomposites of Graphene for Supercapacitor Applications. Current Graphene Science., DOI: 10.2174/2452273201666170321154643

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.