News Release

Scientists predict how 686 marine species' habitats may shift in response to warming seas

Habitats generally tended to shift north along the coastline in the model predictions

Peer-Reviewed Publication

PLOS

Scientists Predict How 686 Marine Species' Habitats May Shift in Response to Warming Seas

image: Examples of east coast species projections. view more 

Credit: Morley et al (2018)

New predictions reveal how global warming may shift the geographic distribution of 686 marine species that inhabit North America's Atlantic and Pacific continental shelves, according to a study published May 16, 2018 in the open-access journal PLOS ONE by James Morley of Rutgers University, United States, and colleagues.

In response to warming seas, some marine species have already moved north or south to more favorable habitats, or to deeper, cooler waters. These changes pose challenges for resource management, such as conflicts over fisheries catch allocation between neighboring regions. Further shifts are expected, and predictions for individual species could help inform conservation and management efforts.

To that end, Morley and colleagues used data from long-term ecological surveys to develop statistical models of thermally preferable habitats for each of 686 North American continental shelf species. Then, for each species, they applied 16 different ocean circulation models under future scenarios of low or high greenhouse gas emissions to see how their preferred habitat might change during the 21st century.

The analysis predicted that climate change will alter the location and size of suitable habitats for many species, with all 16 circulation models projecting similar changes for two thirds of the 686 species. Habitats generally tended to shift north along the coastline in the model predictions, but these shifts varied depending on specific species' requirements, seafloor characteristics, and continental shelf width.

The models predicted that the total area of some species' suitable habitat may increase, but habitats for other species, such as East Coast sheepshead, may shrink significantly. Species off the U.S. and Canadian West Coast may move the farthest, with some, such as West Coast canary rockfish, shifting over 1000 kilometers under a high greenhouse gas emissions scenario.

The researchers note that their predictions do not account for finely detailed knowledge of every species, and the 16 circulation models disagreed strongly for about 20 percent of the species. However, unlike previous studies that focused on narrow geographic regions or took a low-resolution global approach, this study provided fine-grained analysis over a broad geographic range.

"We found a major effect of carbon emissions scenario on the magnitude of projected shifts in species habitat during the 21st century," says James Morley. "Under a high carbon emissions future we anticipate that many economically important species will expand into new regions and decline in areas of historic abundance."

###

In your coverage please use this URL to provide access to the freely available article in PLOS ONE: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196127

Citation: Morley JW, Selden RL, Latour RJ, Frölicher TL, Seagraves RJ, Pinsky ML (2018) Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13(5): e0196127. https://doi.org/10.1371/journal.pone.0196127

Funding: Funding from The Pew Charitable Trusts (#28295), the Mid-Atlantic Fishery Management Council, NOAA's "FY14 Understanding Climate Impacts on Fish Stocks and Fisheries to Inform Sustainable Management" initiative (Competition OAR-CPO-2014-2004106 and the Office of Science and Technology), NSF #OCE-1426891 and #DEB-1616821. RLS is supported by an NSF OCE Postdoctoral Research Fellowship (#OCE-1521565). RJL acknowledges support provided by the Atlantic States Marine Fisheries Commission (#NA14NMF4740362). TLF acknowledges financial support from the Swiss National Science Foundation grant #PP00P2_170687. TLF, RLS, and MLP received support from the Nippon Foundation-UBC Nereus Program. This research was supported by the National Oceanic and Atmospheric Administration (NOAA) through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.