News Release

Sniffing out cancer with improved 'electronic nose' sensors

Peer-Reviewed Publication

American Chemical Society

Scientists have been exploring new ways to "smell" signs of cancer by analyzing what's in patients' breath. In ACS' journal Nano Letters, one team now reports new progress toward this goal. The researchers have developed a small array of flexible sensors, which accurately detect compounds in breath samples that are specific to ovarian cancer.

Diagnosing cancer today usually involves various imaging techniques, examining tissue samples under a microscope, or testing cells for proteins or genetic material. In search of safer and less invasive ways to tell if someone has cancer, scientists have recently started analyzing breath and defining specific profiles of compounds in breath samples. But translating these exhaled disease fingerprints into a meaningful diagnosis has required a large number of sensors, which makes them impractical for clinical use. Hossam Haick and colleagues sought to address this problem.

The researchers developed a small, breath-diagnostic array based on flexible gold-nanoparticle sensors for use in an "electronic nose." The system -- tested on breath samples from 43 volunteers, 17 of whom had ovarian cancer -- showed an accuracy rate of 82 percent. The researchers say developing this method further would require larger-scale clinical testing. They add that the approach could also apply to diagnostics for other diseases.

###

The authors acknowledge funding from the Horizon 2020 ICT Program.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter Facebook


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.