News Release

Deforestation's effects on malaria rates vary by time and distance

Study shows that deforestation in Southeast Asia increases malaria infections before leading to later reductions, although these effects can vary by the location of forest loss

Peer-Reviewed Publication


Deforestation may cause an initial increase in malaria infections across Southeast Asia before leading to later decreases, a study published today in eLife suggests.

The results may help malaria control programs in the region develop better strategies for eliminating malaria infections and educating residents on how to protect themselves from infection.

Mosquitos spread the malaria parasite to humans causing infections that can be severe and sometimes deadly. In the area along the Mekong river in Southeast Asia, many residents hunt or harvest wood in the surrounding forests, which can increase their risk of infection. Yet recent outbreaks of malaria in the region have also been linked to deforestation.

"As countries in the region focus their malaria control and elimination efforts on reducing forest-related transmission, understanding the impact of deforestation on malaria rates is essential," says first author Francois Rerolle, Graduate Student Researcher at the University of California San Francisco (UCSF), US, who works within the UCSF Malaria Elimination Initiative.

To better understand the effects of deforestation on malaria transmission, Rerolle and colleagues examined both forest cover data and village-level malaria incidence data from 2013-2016 in two regions within the Greater Mekong Sub-region.

They found that in the first two years following deforestation activities, malaria infections increased in villages in the area, but then decreased in later years. This trend was mostly driven by infections with the malaria parasite Plasmodium falciparum. Deforestation in the immediate 1-10-kilometer radius surrounding villages did not affect malaria rates, but deforestation in a wider 30-kilometer radius around the villages did. The authors say this is likely due to the effect that wider deforestation can have on human behaviour. "We suspect that people making longer and deeper trips into the forest results in increased exposure to mosquitoes, putting forest-goers at risk," Rerolle explains.

Previously, studies on the Amazon in South America have found increased malaria infections in the first 6-8 years after deforestation, after which malaria rates fall. The difference in timing may be due to regional differences. The previous studies in the Amazon looked at deforestation driven by non-indigenous people moving deeper into the forest, while communities in the current study have long lived at the forest edges and rely on subsistence agriculture.

"Our work provides a more complete picture of the nuanced effects of deforestation on malaria infections," says senior author Adam Bennett, Program Lead at the UCSF Malaria Elimination Initiative. "It may encourage more in-depth studies on the environmental and behavioural drivers of malaria to help inform strategies for disease elimination."


Media contact

Emily Packer, Media Relations Manager
+44 (0)1223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Epidemiology and Global Health, while exploring creative new ways to improve how research is assessed and published. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at

To read the latest Epidemiology and Global Health research published in eLife, visit

About the UCSF Malaria Elimination Initiative

The Malaria Elimination Initiative works in partnership with malaria endemic countries and regions to advance evidence-based malaria policy and practice. Learn more at

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.