News Release

IceCube neutrinos point to long-sought cosmic ray accelerator

UMD-developed alert system enabled telescopes around the world to zero in on cosmic particle factory

Peer-Reviewed Publication

University of Maryland

IceCube Neutrino Detection

image: In this artistic rendering, based on a real image of the IceCube Lab at the South Pole, a distant source emits neutrinos that are detected below the ice by IceCube sensors. view more 

Credit: IceCube/NSF

An international team of scientists, with key contributions from researchers at the University of Maryland, has found the first evidence of a source of high-energy cosmic neutrinos, ghostly subatomic particles that travel to Earth unhindered for billions of light years from the most extreme environments in the universe.

The observations, initially made by the IceCube Neutrino Observatory at the Amundsen-Scott South Pole Station and confirmed by ground- and space-based telescopes around the globe, help resolve a century-old riddle about what sends subatomic particles such as neutrinos and protons speeding through the universe. The coordinated effort relied on an alert system that UMD researchers played a lead role in developing.

Two papers published July 13 in Science provide evidence that energetic particles may originate in jets spewing forth from supermassive black holes--astrophysical objects dubbed blazars because of the blazingly bright light they emit toward Earth. One blazar, designated TXS 0506+056 by astronomers, was singled out as a possible source following an automated alert sent around the world by IceCube on Sept. 22, 2017.

Equipped with a nearly real-time alert system--developed in part by researchers at UMD and triggered by a single very high-energy neutrino colliding with an atomic nucleus in the Antarctic ice in or near IceCube's detectors--the IceCube experiment broadcast the coordinates from which the Sept. 22 neutrino likely came. Two gamma-ray observatories, NASA's orbiting Fermi Gamma-ray Space Telescope and the Major Atmospheric Gamma Imaging Cherenkov Telescope, or MAGIC, in the Canary Islands, detected a flare of high-energy gamma rays that also appeared to come from TXS 0506+056, a convergence of observations that convincingly implicated the blazar as the most likely source.

"This result really highlights the importance of taking a multimessenger approach to these searches,” said Erik Blaufuss, a research scientist in the UMD Department of Physics who led the effort over the past several years to create and deploy IceCube’s high-energy event alert system. “Any one observation made alone would likely not have let us piece together what is actually going on inside this source."

Fermi was the first telescope to identify enhanced gamma-ray activity from TXS 0506+056 within 0.06 degrees of the IceCube neutrino direction. In a decade of Fermi observations of this source, this was the strongest flare in gamma rays, the highest-energy photons. A later follow-up by MAGIC detected gamma rays of even higher energies, and observations from other instruments--including optical, radio, and X-ray telescopes--bolstered the case for TXS 0506+056 as the source of the Sept. 22 neutrino.

The result demonstrates the advantage of combining the signals from different cosmic messengers, like neutrinos and photons. "The era of multimessenger astrophysics is here," says National Science Foundation Director France Córdova. "Each messenger--from electromagnetic radiation, gravitational waves and now neutrinos--gives us a more complete understanding of the universe, and important new insights into the most powerful objects and events in the sky. Such breakthroughs are only possible through a long-term commitment to fundamental research and investment in superb research facilities."

Since they were first detected more than a hundred years ago, cosmic rays--highly energetic particles that continuously rain down on Earth from space--have posed enduring questions: What creates and launches these particles across such vast distances? Where do they come from?

Because cosmic rays are charged particles, their paths are bent by the magnetic fields that fill space. But the powerful cosmic accelerators that produce them also produce neutrinos, which are uncharged and thus unaffected by even the most powerful magnetic fields. Because they rarely interact with matter and have almost no mass, neutrinos travel nearly undisturbed from their creation, giving scientists an almost direct pointer to their source.

Detecting the highest energy neutrinos requires a massive particle detector, and IceCube is by volume the world's largest. Encompassing a cubic kilometer of deep, pristine ice a mile beneath the surface at the South Pole, the detector is composed of more than 5,000 light sensors arranged in a grid. When a neutrino interacts with the nucleus of an atom, it creates a secondary charged particle, which, in turn, produces a characteristic cone of blue light that is detected by IceCube and mapped through the detector's grid of sensitive cameras. Because a charged particle and the light it creates stay essentially true to the neutrino's direction, they give scientists a path to follow back to the source.

Particles of particular interest to the IceCube team pack a more energetic punch. The neutrino that alerted telescopes around the world had an energy of approximately 300 TeV. (The energy of the protons circulating in the 26.7-kilometer ring of the Large Hadron Collider is 6.5 TeV.)

Following the Sept. 22 detection, the IceCube team quickly scoured the detector's archival data and discovered a flare of over a dozen astrophysical neutrinos detected in late 2014 and early 2015, coincident with the same blazar, TXS 0506+056. This independent observation greatly strengthens the initial detection of a single high-energy neutrino and adds to a growing body of data that indicates TXS 0506+056 is the first known accelerator of the highest energy neutrinos and cosmic rays.


The IceCube Collaboration, with over 300 scientists in 49 institutions from around the world, runs an extensive scientific program that has established the foundations of neutrino astronomy. Their research efforts, including critical contributions to the detector operation, are funded by funding agencies in Australia, Belgium, Canada, Denmark, Germany, Japan, New Zealand, Republic of Korea, Sweden, Switzerland, the United Kingdom, and the U.S.

The IceCube Neutrino Observatory is funded primarily by the National Science Foundation and is operated by a team headquartered at the University of Wisconsin-Madison. IceCube construction was also funded with significant contributions from the National Fund for Scientific Research (FNRS & FWO) in Belgium; the Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG) in Germany; the Knut and Alice Wallenberg Foundation, the Swedish Polar Research Secretariat, and the Swedish Research Council in Sweden; and the Department of Energy and the University of Wisconsin-Madison Research Fund in the U.S.

This news release was adapted from text provided by Sílvia Bravo Gallart at the University of Wisconsin-Madison.

The research paper, "Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A," The IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA/17B-403 teams, was published July 13, 2018 in the journal Science.

The research paper, "Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert," IceCube Collaboration: M.G. Aartsen et al., was published July 13, 2018 in the journal of Science.

Scientific Contacts:

UMD: Erik Blaufuss, Research Scientist, Physics, +1 301-405-6077,

UMD: Greg Sullivan, Professor of Physics and Fellow, Joint Space-Science Institute, +1 301-405-6035,

University of Alberta: Darren Grant, IceCube Spokesperson,

Media Relations Contacts:

The University of Wisconsin-Madison: Sílvia Bravo Gallart, +1 608-308-3003,

UMD: Chris Cesare, +1 301-405-0824,

NSF: Joshua Chamot, +1 703-292-4489,

NSF: Peter West, +1 703-292-7530,

Press Conference Details:

Media are invited to attend a U.S. National Science Foundation (NSF) press conference announcing the multimessenger astrophysics breakthrough led by the IceCube Neutrino Observatory. The press conference will take place on Thursday, July 12, 2018, at 11:00 a.m. EDT and will be held at NSF headquarters (2415 Eisenhower Avenue, Alexandria, Virginia 22314). Because space is limited and pre-registration is required for security access, please RSVP by close of business on July 11 to, including the tag MEDIA in the subject line of your RSVP. Event details, including building entry and how early to arrive, will follow your RSVP. The press conference will also stream live to

The following researchers will offer brief opening remarks with time for questions at the end of the panel:


France Córdova, Director, National Science Foundation


Francis Halzen, IceCube Principal Investigator, University of Wisconsin-Madison
Regina Caputo, Fermi-LAT Analysis Coordinator, University of Maryland/NASA, Goddard Space Flight Center
Razmik Mirzoyan, MAGIC Spokesperson , Max Planck Institute for Physics
Olga Botner, Former IceCube Spokesperson, Uppsala University

Representatives for about 20 observatories on Earth and in space that have participated in these results will be in the room July 12 and will be available to the media after the press conference. Reporters following the event remotely can send questions to

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 9,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $175 million.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.