image: A functioning brain cell that is expressing diseased tau. view more
Credit: Hallinan et al., <em>JNeurosci</em> 2019
Tau can quickly spread between neurons but is not immediately harmful, according to research in mouse neurons published in JNeurosci. Intervening during the initial accumulation of tau could potentially halt the progression of Alzheimer's disease.
A hallmark of Alzheimer's disease is the accumulation of tau protein in neurons, which leads to their death. A diseased version of tau folds itself incorrectly, which leads to the buildup. Researchers did not know the timescale of this process and how misfolded tau can spread to other cells.
Hallinan et al. introduced diseased tau into mouse neurons growing in a cell culture. Within days, the activated tau had spread to other neurons and began misfolding and accumulating. Despite the tau buildup, both the donating and accepting neurons remained healthy and capable of sending electrical messages. These results show that tau buildup itself is not harmful, but rather it is the cellular processes it disrupts that kill neurons.
###
Manuscript title: Tau Misfolding Efficiently Propagates Between Individual Intact Hippocampal Neurons
Please contact media@sfn.org for full-text PDF and to join SfN's journals media list.
About JNeurosci
JNeurosci, the Society for Neuroscience's first journal, was launched in 1981 as a means to communicate the findings of the highest quality neuroscience research to the growing field. Today, the journal remains committed to publishing cutting-edge neuroscience that will have an immediate and lasting scientific impact, while responding to authors' changing publishing needs, representing breadth of the field and diversity in authorship.
About The Society for Neuroscience
The Society for Neuroscience is the world's largest organization of scientists and physicians devoted to understanding the brain and nervous system. The nonprofit organization, founded in 1969, now has nearly 37,000 members in more than 90 countries and over 130 chapters worldwide.