News Release

Evidence for ancient magnetic sense in humans

Interdisciplinary study suggests human brain responds to changes in Earth's magnetic fields

Peer-Reviewed Publication

Society for Neuroscience

Electrical Induction

video: Is electrical induction responsible for the brainwave response? (Ans: no). The six diagrams show the strength of the alpha-waves (~ 10 Hz) in the human brain, at 64 locations on the human head for different magnetic field rotations; note the symbols for the nose and ears for reference. The bottom row of diagrams shows experiments with the North-seeking direction of the field pointing stably downwards at an inclination of 60? (as in the Northern Hemisphere), and the top row with the field pointing upwards. The left pair of diagrams show results from the counter-clockwise rotation of the horizontal component of the geomagnetic field (CCW from NE to NW), the middle column is the opposite rotation (CW from NW to NE), and the right shows one of the control conditions where the field did not rotate, but data are analyzed in the same fashion. Data are shown at about half a second after the field shifts (or not, for the FIXED control). Only the downwards CCW stimulation causes a significant drop in the alpha-wave band (shown by the deep blue in the lower left diagram). Note that electrical induction will depend only upon the moving, horizontal component of the magnetic field, not the static vertical component. The lack of response in the upwards CCW stimulation (top right diagram) contradicts predictions of the electrical induction hypothesis. This shows that the effect is not an artifact of any form of electrical induction, including from the electrodes on the scalp. view more 

Credit: Wang et al., eNeuro (2019)

The human brain can unconsciously respond to changes in Earth's magnetic fields, according to a team of geoscientists and neurobiologists. Reported in eNeuro, this interdisciplinary study revives a research area in neuroscience that has remained dormant for decades.

Many animals, such as migratory birds and sea turtles, have a geomagnetic sense that supports their biological navigation system. Although magnetoreception has been well-studied in these animals, scientists have not yet been able to determine whether humans share this ability.

Geoscientist Joseph Kirschvink, neuroscientist Shin Shimojo, and their colleagues at Caltech and the University of Tokyo set out to address this long-standing question using electroencephalography to record adult participants' brain activity during magnetic field manipulations. Carefully controlled experiments revealed a decrease in alpha-band brain activity -- an established response to sensory input -- in some participants. The researchers replicated this effect in participants who responded strongly and confirmed these responses were tuned to the magnetic field of the Northern Hemisphere, where the study was conducted.

Future studies of magnetoreception in diverse human populations may provide new clues into the evolution and individual variation of this ancient sensory system.


Please contact for full-text PDF: Transduction of the Geomagnetic Field as Evidenced from Alpha-band Activity in the Human Brain*

*A preprint of this manuscript has been posted on bioRxiv:

About eNeuro

eNeuro, the Society for Neuroscience's open-access journal launched in 2014, publishes rigorous neuroscience research with double-blind peer review that masks the identity of both the authors and reviewers, minimizing the potential for implicit biases. eNeuro is distinguished by a broader scope and balanced perspective achieved by publishing negative results, failure to replicate or replication studies. New research, computational neuroscience, theories and methods are also published.

About The Society for Neuroscience

The Society for Neuroscience is the world's largest organization of scientists and physicians devoted to understanding the brain and nervous system. The nonprofit organization, founded in 1969, now has nearly 37,000 members in more than 90 countries and over 130 chapters worldwide.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.