News Release

New study estimates frequency of flight-disrupting volcanic eruptions

Peer-Reviewed Publication

University of Leeds

Volcanic Ash Shard 2

image: Volcanic ash shard is shown. view more 

Credit: University of Leeds

Holidaymakers concerned about fresh volcanic eruptions causing flight-disrupting ash clouds across Northern Europe might be reassured by a study setting out the first reliable estimates of their frequency.

While the University of Leeds-led research suggests that ash clouds are more common over northern Europe than previously thought, it puts the average gap between them at about 44 years.

It also reveals that these types of ash clouds have about a 20 per cent chance of occurring in Northern Europe in any one decade.

Lead author Dr Liz Watson, from the School of Geography at Leeds, said: "Reliable estimates of the frequency of volcanic ash events could help airlines, insurance companies and the travelling public mitigate the economic losses and disruption caused by ash clouds in the future."

The work began soon after 2010's explosive eruption of Icelandic volcano Eyjafjallajökull, which caused more than 10 million air passengers to be stranded and cost the European economy an estimated £4 billion.

A team of researchers, which included academics from the universities of St Andrews and South Florida, compared records of volcanic ash fallout (also known as tephra) during the last 1,000 years.

Focusing on northern Europe - downwind of one of the world's most active volcanic regions, Iceland - they examined samples taken from peatlands and lake beds in mainland norther Europe, Great Britain, Ireland and the Faroe Islands, alongside previously existing samples taken from other sites across Northern Europe.

The samples - cores up to seven metres long - were taken from peat and lake sediment where geological records are particularly well preserved.

Using electron microscopy and chemical analysis, the team identified tiny shards of preserved volcanic ash, called cryptotephra - about the width of a human hair - which enabled them to pinpoint at what point volcanic ash clouds had spread across the continent.

For many of the occurrences, the researchers were also able to match sample data to historical records or to existing geological data which charted specific eruptions.

The work found evidence of 84 ash clouds during the last 7,000 years, most of which could be traced to eruptions from Icelandic volcanoes. More incidences of volcanic ash are recorded over the past 1,000 years, because evidence is better preserved and historical records are more complete, leading the team to estimate an average recurrence of 44 years.

Co-author Dr Graeme Swindles is Associate Professor of Earth System Dynamics in the School of Earth and Environment at Leeds. He said: "In 2010, when Eyjafjallajökull erupted, people were really shocked - it seemed to come completely out of the blue, but the eruption of Grímsvötn, the following year, was an extraordinary coincidence.

"Although it is possible that ash clouds can occur on an annual basis, the average return interval for the last 1,000 years is around 44 years.

"The last time volcanic ash clouds affected Northern Europe before the recent event was in 1947, 69 years ago - but aviation was much less intense at that time and it simply didn't have the same sort of impact.

"Our research shows that, over thousands of years, these sorts of incidents are not that rare - but people wondering how likely it is that the 2010 chaos will be repeated in the next few years can feel somewhat reassured."

The researchers also looked at the intensity of the eruptions responsible for producing volcanic ash clouds. They found that volcanic activity likely to produce ashfall in Northern Europe would typically measure four or above on the internationally-recognised Volcanic Explosivity Index (VEI).

"Eruptions can't always be indexed rapidly," explained co-author Dr Ivan Savov, also of Leeds' School of Earth and Environment. "But in cases where that calculation can be made early on, it will give a good indication of the likelihood of volcanic ash causing a major problem."

"The 2010 eruption cost billions in terms of lost revenues and there was an effect on the global economy, so the work we've been able to do to quantify the risk will be of interest to insurance companies trying to make sense of the potential for future air traffic disruptions."

###

Further information

The research paper, "Estimating the frequency of volcanic ash clouds over northern Europe", is published in Earth and Planetary Science Letters. The work was funded by the Natural Environment Research Council and the National Science Foundation in the US.

For interviews, please contact the University of Leeds press office via a.martinez@leeds.ac.uk or +44 (0)113 34 34196.

Natural Environment Research Council

NERC is the UK's main agency for funding and managing research, training and knowledge exchange in the environmental sciences. Our work covers the full range of atmospheric, Earth, biological, terrestrial and aquatic science, from the deep oceans to the upper atmosphere and from the poles to the equator. We co-ordinate some of the world's most exciting research projects, tackling major issues such as climate change, environmental influences on human health, the genetic make-up of life on Earth, and much more. NERC is a non-departmental public body. We receive around £330m of annual funding from the Department for Business, Energy & Industrial Strategy (BEIS). http://www.nerc.ac.uk

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK, with more than 31,000 students from 147 different countries, and a member of the Russell Group research-intensive universities.

We are a top 10 university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and positioned as one of the top 100 best universities in the world in the 2015 QS World University Rankings. We are The Times and The Sunday Times University of the Year 2017. http://www.leeds.ac.uk


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.