News Release

全光阿秒时间干涉技术——一种同时结合时域和频域分辨率的高精度探测手段

Peer-Reviewed Publication

Science China Press

图1.

image: 全光阿秒时域干涉仪原理:驱动场E0与原子相互作用产生阿秒脉冲序列,形成阿秒时域狭缝,狭缝间的干涉在频谱上形成干涉条纹。弱的信号场能对电子轨迹进行扰动,从而改变干涉仪的波前,最终导致干涉条纹的移动。(a)扫描信号场和驱动场之间的延时得到干涉条纹图样行迹图。(b)由图(a)干涉条纹图样行迹图提取的超短脉冲时域结构。 view more 

Credit: ©《中国科学》杂志社

随着人类对微观物理研究的不断深入,对探测技术的分辨率要求亦不断革新,超短脉冲由于其极高的时间分辨率,一直以来都是探测微观物理的重要手段,因此对超短脉冲的时间结构测量显得至关重要。

近二十年来,随着超快光学的不断发展,超短脉冲已经达到了阿秒量级的原子时间尺度,然而由于傅里叶变换的性质,超高时间分辨尺度往往意味着更低的频率分辨率,而原子分子的结构信息往往需在频域中提取,因此,寻求一种同时结合时域和频域分辨率的探测手段显得至关重要。

最近,华中科技大学超快光学团队在《国家科学评论》(National Science Review,NSR) 发表研究论文,提出了一种全光阿秒时域干涉方案。该方案利用强激光驱动的高次谐波阿秒脉冲序列作为时间干涉狭缝,通过引入弱的微扰场可以精确操控该干涉仪的时域波前,进而影响最终高次谐波频谱分布。单个高次谐波的频率移动直接与微扰场的时域波形及阿秒脉冲的时间间隔相关,可以被用于对相关物理量进行精度测量。该方案克服了单个超短脉冲频域分辨率低的弊端,兼具高的时间分辨本领和能量分辨本领。图1为该干涉仪的原理图。利用该项技术的超高时间分辨率,作者成功实现了任意偏振态光场时域波形的精密测量。

同时,利用该干涉仪特有的能量分辨率,作者也进行了微观粒子结构信息的精密探测。实现发现氖气产生的阿秒时间狭缝间隔为恒定值,而氩气产生的阿秒时间狭缝间隔在50eV左右发生一个微小的跳变,这是由于氩原子具有更多电子壳层,其更复杂的电子态结构导致高次谐波阿秒狭缝可以由两种轨道贡献。不同轨道间的相互干涉使得阿秒狭缝呈现特殊的时域结构,这一异常结构最终能被该干涉仪成功探测。

该方案将基于干涉手段的测量技术推广到了阿秒时间-百毫电子伏时间频率域,在精密测量方面具有广阔的应用前景。

###

文章信息:

All-optical attosecond time domain interferometry
https://doi.org/10.1093/nsr/nwaa211


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.