News Release

Les secousses géomagnétiques enfin reproduites et expliquées

Peer-Reviewed Publication

CNRS

Geomagnetic Jerks Finally Reproduced and Explained

image: Visualization of the interior of the Earth's core, as represented by a computer simulation model (view of the equatorial plane and a spherical surface near the inner core, seen from the North Pole). Magnetic field lines (in orange) are stretched by turbulent convection (in blue and red). Hydromagnetic waves are emitted from the inner core, and spread along the magnetic field lines up to the core's boundary, where they are focused and give rise to geomagnetic jerks. view more 

Credit: © Aubert et al./IPGP/CNRS Photo library

Initialement décrites en 1978, les secousses géomagnétiques sont des événements imprévisibles, qui accélèrent brutalement l’évolution du champ magnétique terrestre et faussent les prédictions de celui-ci à l’échelle de quelques années. Or, notre champ magnétique entre en jeu dans de nombreuses activités humaines, de la détermination du cap dans les téléphones mobiles au vol des satellites à basse altitude. Il est donc fondamental de pouvoir prédire son évolution avec précision. Seulement, les secousses géomagnétiques posent problème aux géophysiciens depuis plus de quarante ans.

Le champ magnétique de la Terre est produit par la circulation de la matière à l’intérieur de son noyau métallique à partir de l’énergie libérée lors du refroidissement de ce noyau. Les chercheurs connaissent deux types de mouvement donnant naissance à deux types de variations du champ magnétique : celles issues du mouvement lent de convection, que l’on peut relever à l’échelle d’un siècle, et celles issues des ondes hydromagnétiques « rapides », détectables à l’échelle de quelques années. On soupçonnait que ces dernières pouvaient jouer un rôle dans les secousses mais l’interaction de ces ondes avec la convection lente ainsi que leur mécanisme de propagation et d’amplification restaient à élucider.

Aussi, pour résoudre ce mystère, Julien Aubert de l’Institut de physique du globe de Paris (CNRS/IPGP/IGN/Université de Paris) a développé avec un collègue de l’Université technique du Danemark (DTU) une simulation informatique s’approchant au plus près des conditions physiques de notre noyau. Nécessitant l’équivalent de 4 millions d’heures de calcul, cette simulation a pu être réalisée grâce aux supercalculateurs du GENCI.

Les chercheurs ont ainsi pu reproduire la succession d’évènements qui mène aux secousses géomagnétiques. Dans la simulation, celles-ci naissent à partir d’ondes hydromagnétiques émises en profondeur. Alors que ces ondes approchent de la surface du noyau, elles sont focalisées et amplifiées pour donner lieu à des perturbations magnétiques en tout point comparables aux secousses observées.

La reproduction numérique et la compréhension de ces secousses ouvrent la voie vers une meilleure prédiction du champ magnétique terrestre. Par ailleurs, préciser les origines des variations du champ magnétique pourra également servir aux géophysiciens pour étudier les propriétés physiques du noyau de la Terre et de son manteau profond.

###

Ce projet de recherche a été financé par la Fondation Simone et Cino Del Duca de l’Institut de France, qui au travers d’une de ses subventions scientifiques soutient la recherche fondamentale en sciences de la Terre.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.