News Release

Harvard and USC scientists show how DHA resolves inflammation

New research in The FASEB Journal suggests that fish oil DHA is used to create Maresins, which cause macrophages to 'turn off' inflammation

Peer-Reviewed Publication

Federation of American Societies for Experimental Biology

Bethesda, MD—Chronic inflammation is a major factor in a wide range of problems from arthritis to cardiovascular disease, and DHA (found in fish oil) is known to temper this problem. A new research report appearing in the July 2013 issue of The FASEB Journal, helps explain why DHA is important in reducing inflammation, and provides an important lead to finding new drugs that will help bring people back to optimal health. Specifically, researchers found that macrophages (a type of white blood cell) use DHA to produce "maresins," which serve as the "switch" that turns inflammation off and switches on resolution.

"We hope that the results from this study will enable investigators to test the relevance of the maresin pathway in human disease," said Charles N. Serhan, Ph.D., a researcher involved in the work from the Brigham & Women's Hospital and Harvard Medical School in Boston, Mass. "Moreover, we hope to better understand resolution biology and its potential pharmacology so that we can enhance our ability to control unwanted inflammation and improve the quality of life."

To make this discovery, Serhan and colleagues deconstructed the biosynthetic pathway for maresin biosynthesis and found that human macrophages are responsible for converting DHA to the novel epoxide intermediate "13S, 14S-epoxy-maresin." Then, they learned how to synthesize the molecule and found that maresins caused macrophages to change their "type" so they no longer caused inflammation (switching them from M1 to M2 phenotypes).

"We've known for a long time that DHA tames inflammation, now, we learn exactly how DHA works: via new substances called maresins," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "We encounter inflammation almost daily, but our body has ways of turning it off. This is an important step toward understanding exactly this happens. You're likely to be hearing a lot more about maresins if, or when, new therapies arise from this discovery."

###

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is among the most cited biology journals worldwide according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 27 societies with more than 110,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Jesmond Dalli, Min Zhu, Nikita A. Vlasenko, Bin Deng, Jesper Z. Haeggström, Nicos A. Petasis, and Charles N. Serhan. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype. FASEB J July 2013 27:2573-2583; doi:10.1096/fj.13-227728 ; http://www.fasebj.org/content/27/7/2573.abstract


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.