News Release

A new cell factory for high-efficiency production of ectoine

Peer-Reviewed Publication

KeAi Communications Co., Ltd.

METABOLIC ENGINEERING STRATEGIES EMPLOYED FOR ECTOINE PRODUCTION BY E. COLI.

image: METABOLIC ENGINEERING STRATEGIES EMPLOYED FOR ECTOINE PRODUCTION BY E. COLI. view more 

Credit: JIANGNAN UNIVERSITY

Ectoine, a cyclic amino acid derivative of aspartate, is a natural stabiliser of proteins, nucleic acids and the cell membrane found in a wide range of bacteria. It helps organisms survive salt, drought, high or freezing temperatures, and other environmental stresses. These days, ectoine is exploited as a bioactive ingredient in cosmetics to protect the skin from UV irradiation and dryness. It is also an active component in some healthcare products. However, challenges around scaling up its industrial production are proving a big obstacle for companies keen to benefit from its many properties.

Commercial ectoine is traditionally produced via ‘bacterial milking’ of the halophilic bacterium Halomonas elongate. This involves repeatedly exposing it to high salinity and low salinity culture mediums. In contrast, biotechnologically engineering the typical industrial strains, such as Escherichia coli (E. coli) or Corynebacterium glutamicum, to produce ectoine under mild cultivation, avoids the application of high salinity and simplifies the production procedure.

A study published in the KeAi journal Green Chemical Engineering, has reported the biotechnological construction of an efficient ectoine cell factory based on E. coli BL21(DE3). Using metabolic engineering, researchers synthesised the ectoine with the E. coli, using glucose as the sole carbon source. By reconstructing the ectoine synthetic pathway, and enhancing the biosynthesis of ectoine precursor in E. coli, a high level of 60.7 g/L of ectoine was produced using a fed-batch fermentation approach. 

Co-corresponding author Zhen Kang, from Jiangnan University in China, explains: “E. coli is one of the most widely-used industrial bacteria. Its genetic background and metabolic pathways are well studied. There are also sophisticated and easy-to-operate cultivation procedures. Using E. coli in this process increases the efficiency of the ectoine production process. In addition, the recombinant strain displays better growth and higher productivity compared with other ectoine-producing strains. Importantly, it also doesn’t knock out genomic genes and is therefore more genetically stable.”

###

Contact the corresponding authors: Zhen Kang, zkang@jiangnan.edu.cn; Yang Wang, y.wang@jiangnan.edu.cn.

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.