News Release

CRISPR/Cas9 gene editing boosts effectiveness of ultrasound cancer therapy

Peer-Reviewed Publication

American Chemical Society

CRISPR/Cas9 gene editing boosts effectiveness of ultrasound cancer therapy

image: Ultrasound irradiation of a tumor causes a lipid nanoparticle (drawing shown above) to release harmful ROS and a CRISPR/Cas9 gene-editing system. view more 

Credit: Credit: Adapted from ACS Central Science 2021, DOI: 10.1021/acscentsci.1c01143

Sonodynamic therapy uses ultrasound in combination with drugs to release harmful reactive oxygen species (ROS) at the site of a tumor. However, the treatment isn’t very effective because cancer cells can activate antioxidant defense systems to counteract it. Now, researchers reporting in ACS Central Science have breached these defenses with CRISPR/Cas9 gene editing, allowing sonodynamic therapy to effectively shrink tumors in a mouse model of liver cancer.

Hepatocellular carcinoma, the most common form of liver cancer, has a poor prognosis, and surgical treatment by removing part of the liver or transplanting a healthy liver is not suitable for patients with more advanced disease. Because ultrasound can penetrate deep within tissues, sonodynamic therapy could be an effective, non-invasive way to treat hepatocellular carcinoma. But currently, cancer cells can quickly overcome the therapy by activating a gene called nuclear factor erythroid 2-related factor 2 (NFE2L2), which deploys the cells’ detoxification and antioxidant enzyme defenses. CRISPR/Cas9 gene-editing technology has been used to knock down gene expression in the lab. So, Wei Feng, Huixiong Xu, Yu Chen and colleagues wondered if they could increase sonodynamic therapy’s effectiveness by using this technology to reduce NFE2L2 expression.

As a first step, the researchers encapsulated the CRISPR/Cas9 system and an ROS precursor molecule in lipid nanoparticles. Then, they treated hepatocellular carcinoma cells in a petri dish with the nanoparticles. The lipid nanoparticles were taken up by the cells’ lysosomes. Ultrasound treatment caused ROS formation, which ruptured lysosomes and allowed the CRISPR/Cas9 system to enter the nucleus and knock down NFE2L2 gene expression. The ROS also damaged other cellular components. As a result, significantly more cancer cells died from the sonodynamic therapy than without NFE2L2 gene editing.

Next, the team injected the nanoparticle treatment into mice with implanted human hepatocellular carcinoma tumors. After 15 days of the combined nanoparticle and ultrasound treatment, all of the tumors in the mice disappeared and didn’t come back. Mice treated with sonodynamic therapy alone had fewer tumors than untreated mice, but the addition of the CRISPR/Cas9 system significantly improved the therapy’s effectiveness. Because gene editing occurs only in tumor tissues under ultrasound irradiation, it won’t cause gene mutations in healthy tissues, the researchers say.

The authors acknowledge funding from the National Natural Science Foundation of China and Shanghai Municipal Health Commission.

The paper’s abstract will be available on Dec. 8 at 8 a.m. Eastern time here:

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact

Follow us: Twitter | Facebook | LinkedIn | Instagram

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.