News Release

PSMA PET validates EAU classification system to determine risk of prostate cancer recurrence

Peer-Reviewed Publication

Society of Nuclear Medicine and Molecular Imaging

PET disease extent in EAU BCR low-risk patients, EAU BCR high-risk patients, and BCP patients (A) and predictors of PET M1 disease (B).

image: PET disease extent in EAU BCR low-risk patients, EAU BCR high-risk patients, and BCP patients (A) and predictors of PET M1 disease (B). OR = odds ratio. view more 

Credit: Justin Ferdinandus, Wolfgang P. Fendler, Andrea Farolfi, et al.

Reston, VA (January 20, 2022)—New research has confirmed the accuracy of the novel European Association of Urology (EAU) risk classification system that groups prostate cancer patients based on their risk of recurrence. Prostate-specific membrane antigen (PSMA) PET imaging of men with prostate cancer validated the EAU groupings and provided insights that could further refine risk assessment for patients. This study was published in the January issue of The Journal of Nuclear Medicine.

The diagnostic workup of prostate cancer has changed rapidly over the past few years. Recently, the EAU introduced a clinical system separating patients with rising PSA values after first-line therapy (prostate surgery or radiation) into groups of those with high risk and those with low risk for development of metastases. Shortly after this, the U.S. Food and Drug Administration approved 68Ga-PSMA-11 as the first PET drug to target the PSMA for men with prostate cancer.

“Given the growing availability of PSMA-directed PET imaging, our study sought to assess disease in patients based on the EAU classifications while using PSMA PET to identify subgroups of patients, such as those with undetectable, locoregional or distant metastatic disease,” said Justin Ferdinandus, MD, nuclear medicine physician at University Hospital in Essen, Germany.

The multicenter, international study analyzed PSMA PET scans of nearly 2,000 patients with prostate cancer and rising PSA levels. Patterns of disease spread on PSMA PET imaging were used to classify prostate cancer patients into both low- and high-risk groups. High-risk groups were found to have higher rates of metastatic disease on PSMA PET compared to low-risk groups. However, PSMA PET also found metastatic disease in low-risk and no disease in high-risk patients.

“Our study underscores the utility of the EAU risk groups to determine risk of metastasis in biochemically recurrent prostate cancer. But not every high-risk patient has metastases and not every low-risk patient has locoregional or no disease,” said Wolfgang Fendler, MD, nuclear medicine physician at University Hospital in Essen.

He continued, “The ultimate aim of imaging is to provide the right treatment for each patient. As evidenced in this research, the accuracy of PSMA PET is essential to improve stratification and potentially outcomes both in low-risk and high-risk settings.” 

The authors of “PSMA PET validates higher rates of metastatic disease for European Association of Urology Biochemical Recurrence Risk Groups: an international multicenter study” include Justin Ferdinandus, Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; Wolfgang P. Fendler and Ken Hermann, Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany, and Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California; Andrea Farolfi, Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany, and Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Samuel Washington, Department of Urology, University of California San Francisco, San Francisco, California, and Department of Epidemiology and Statistics, University of California San Francisco, San Francisco, California; Osama Mohamad, Department of Radiation Oncology, University of California San Francisco, San Francisco, California; Miguel H. Pampaloni and Thomas A. Hope, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California; Peter J.H. Scott, Melissa Rodnick, Benjamin L. Viglianti and Morand Piert, Department of Radiology, University of Michigan, Ann Arbor, Michigan; Matthias Eiber, Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; and Johannes Czernin, Wesley R. Armstrong and Jeremie Calais, Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California.

 

Visit JNM’s new website for the latest research, and follow our new Twitter and Facebook pages @JournalofNucMed.

###

Please visit the SNMMI Media Center for more information about molecular imaging and precision imaging. To schedule an interview with the researchers, please contact Rebecca Maxey at (703) 652-6772 or rmaxey@snmmi.org.
 

About JNM and the Society of Nuclear Medicine and Molecular Imaging
The Journal of Nuclear Medicine (JNM) is the world’s leading nuclear medicine, molecular imaging and theranostics journal, accessed more than 13 million times each year by practitioners around the globe, providing them with the information they need to advance this rapidly expanding field. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

JNM is published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging—precision medicine that allows diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes. For more information, visit www.snmmi.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.