News Release

Pusan National University researchers show how radiative coolers can “beat the heat” off solar cells

Scientists demonstrate how integrating a radiative cooler with a multi-junction solar cell can enhance its power conversion efficiency

Peer-Reviewed Publication

Pusan National University

Radiative Coolers can increase efficiency of Solar Cells

image: Scientists demonstrate how integrating a radiative cooler with a multi-junction solar cell can enhance its power conversion efficiency. view more 

Credit: Pusan National University

A solar cell converts light into electricity. So, the longer a solar cell remains out in the sun, the more power it can produce, right? Not necessarily. Solar cells capture massive amounts of heat during the day and their temperatures typically rise to tens of degrees greater than the ambient temperature of ~25°C. The materials that solar cells are made of degrade at such high temperatures and overall, the performance of the solar cells fall.

For years, researchers have been working on ways to improve solar cell performance—their power conversion efficiency—by trying to maintain their temperature. Radiative cooling (RC) has emerged as a promising technique due to its simplicity and low cost. In RC, a micro-grating of glass, i.e. a two dimensional framework structure, is fixed onto the surface of the solar panel. The materials and placement of these gratings are such that light absorption is enhanced while heat (infrared radiation) is emitted through the atmosphere into outer space. This method has the additional advantage of not needing any external energy source to operate. Thus, RC can simultaneously reduce the temperature of the solar cell while increasing the energy input (light) for conversion into a voltage.

But research into RC as a technique applicable to solar cells remains nascent, and the influence of type of solar cell on RC efficiency remains to be seen.

Now, scientists from Korea, led by Prof. Gil Ju Lee from Pusan National University, provide greater insight into this aspect. Their findings were published on 22 December 2021 in Advanced Energy Materials. Prof Lee explains: “In current solar cells, separate water or air cooling systems that require electricity to operate are needed. Using RC can mean transitioning to a completely eco-friendly and energy-free cooling system. Our research is the first theoretical and experimental demonstration of the effectiveness of radiative-cooler-integrated solar cells.

A theoretical scouring of a wide range of solar cell-RC combinations showed that multi-junction solar cells (MJSCs) were most effective with an RC. To verify their outcome, they performed outdoor field tests on an RC-integrated InGaP/GaAs/Ge MJSC. Under an approximately 900 Wm‑2 direct sunlight, they achieved a 6°C temperature drop, 2% increase in open-circuit voltage, and 0.5 mA increase in short circuit current, thus demonstrating enhanced cooling performance and power-consumption efficiency than conventional glass-mounted MJSCs without an RC.

Prof. Lee says, “Before our study, research has largely focused on single-junction solar cells and computational evaluations. Our study is the first to experimentally show that a more effective type of solar cell, the MJSC, benefits the most from RCs.” Speaking of how this finding can fast-track our quest for net zero emissions, Prof. Lee says: “With RC, the best kind of solar cells can be truly a renewable means of generating electricity, with long-lasting zero-energy operation, thus saving the earth’s resources.”

***

Reference

DOI: https://doi.org/10.1002/aenm.202103258

Authors: Se-Yeon Heo (2), Do Hyeon Kim (2), Young Min Song (2), and Gil Ju Lee (1)

Affiliations:

  1. Department of Electronics Engineering, Pusan National University, Republic of Korea
  2. Gwangju Institute of Science and Technology (GIST), Republic of Korea


About Pusan National University

Pusan National University, located in Busan, South Korea, was founded in 1946 and is now the no. 1 national university of South Korea in research and educational competency. The multi-campus university also has other smaller campuses in Yangsan, Miryang, and Ami. The university prides itself on the principles of truth, freedom, and service, and has approximately 30,000 students, 1200 professors, and 750 faculty members. The university is composed of 14 colleges (schools) and one independent division, with 103 departments in all.     

Website: https://www.pusan.ac.kr/eng/Main.do


About the author

Prof. Gil Ju Lee is an Assistant Professor of the Department of Electronics Engineering at Pusan National University. Before coming to Pusan National University, he completed the Postdoctoral training and doctoral course at Young Min Song’s lab at Gwangju Institute of Science and Technology (GIST). His research interests involve photonics and optics for next-generation optoelectronics and optical systems. Currently, Lee and his team are developing multi-functional radiative coolers for various applications such as colored exterior materials, vehicles, wearables, and photovoltaics.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.