News Release

Machine learning improves human speech recognition

Human speech recognition model provides good predictions for hearing-impaired listeners.

Peer-Reviewed Publication

American Institute of Physics

Overview of the human speech recognition model

image: Overview of the human speech recognition model view more 

Credit: Jana Roßbach

WASHINGTON, March 1, 2022 -- Hearing loss is a rapidly growing area of scientific research as the number of baby boomers dealing with hearing loss continues to increase as they age.

To understand how hearing loss impacts people, researchers study people's ability to recognize speech. It is more difficult for people to recognize human speech if there is reverberation, some hearing impairment, or significant background noise, such as traffic noise or multiple speakers.

As a result, hearing aid algorithms are often used to improve human speech recognition. To evaluate such algorithms, researchers perform experiments that aim to determine the signal-to-noise ratio at which a specific number of words (commonly 50%) are recognized. These tests, however, are time- and cost-intensive.

In The Journal of the Acoustical Society of America, published by the Acoustical Society of America through AIP Publishing, researchers from Germany explore a human speech recognition model based on machine learning and deep neural networks.

"The novelty of our model is that it provides good predictions for hearing-impaired listeners for noise types with very different complexity and shows both low errors and high correlations with the measured data," said author Jana Roßbach, from Carl Von Ossietzky University.

The researchers calculated how many words per sentence a listener understands using automatic speech recognition (ASR). Most people are familiar with ASR through speech recognition tools like Alexa and Siri.

The study consisted of eight normal-hearing and 20 hearing-impaired listeners who were exposed to a variety of complex noises that mask the speech. The hearing-impaired listeners were categorized into three groups with different levels of age-related hearing loss.

The model allowed the researchers to predict the human speech recognition performance of hearing-impaired listeners with different degrees of hearing loss for a variety of noise maskers with increasing complexity in temporal modulation and similarity to real speech. The possible hearing loss of a person could be considered individually.

"We were most surprised that the predictions worked well for all noise types. We expected the model to have problems when using a single competing talker. However, that was not the case," said Roßbach.

The model created predictions for single-ear hearing. Going forward, the researchers will develop a binaural model since understanding speech is impacted by two-ear hearing.

In addition to predicting speech intelligibility, the model could also potentially be used to predict listening effort or speech quality as these topics are very related.


The article "A model of speech recognition for hearing-impaired listeners based on deep learning" is authored by Jana Roßbach, Birger Kollmeier, and Bernd T. Meyer. The article will appear in The Journal of the Acoustical Society of America on March 1, 2022 (DOI: 10.1121/10.0009411). After that date, it can be accessed at


The Journal of the Acoustical Society of America (JASA) is published on behalf of the Acoustical Society of America. Since 1929, the journal has been the leading source of theoretical and experimental research results in the broad interdisciplinary subject of sound. JASA serves physical scientists, life scientists, engineers, psychologists, physiologists, architects, musicians, and speech communication specialists. See


The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world's leading journal on acoustics), Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.