News Release

Learning from the single cell: A new technique to unravel gene regulation

Peer-Reviewed Publication

Hubrecht Institute

Artistic rendering of confocal micrograph

image: zebrafish notochord nuclei at 15-somite stage. Grey: nuclear DNA (DAPI). Color: histone H3K9me3 view more 

Credit: Phong Nguyen, Franka Rang & Kim de Luca. Copryight Hubrecht Institute.

How is the activity of genes regulated by the packaging of DNA? To answer this question, a technique to measure both gene expression and DNA packaging at the same time was developed by Franka Rang and Kim de Luca, researchers from the group of Jop Kind (group leader at the Hubrecht Institute and Oncode Investigator). This method, EpiDamID, determines the location of modified proteins around which the DNA is wrapped. It is important to gather information about these modifications, because they influence the accessibility of DNA, thereby affecting the gene activity. EpiDamID is therefore valuable for research into the early development of organisms. The results of the study are published in Molecular Cell on April 1st 2022.


In order to fit DNA into the nucleus of a cell, it is tightly packed around nuclear proteins: histones. Depending on the tightness of this winding, the DNA can be (in)accessible to other proteins. This therefore determines whether the process of gene expression, translation of DNA into RNA and eventually into proteins, can take place.


DNA packaging determine gene activity

The tightness of DNA winding around histones is regulated by the addition of molecular groups, so-called post-translational modifications (PTMs), to the histones. For example, if certain molecules are added to the histones, the DNA winding is loosened. This makes the DNA more accessible for certain proteins and causes the genes in this part of the DNA to become active, or expressed. Furthermore, proteins that are crucial for gene expression can directly recognize and bind the PTMs. This enables transcription: the process of DNA copying.

The regulation of gene expression, for instance through PTMs, is also known as epigenetic regulation. Since all cells in a body have the same DNA, regulation of gene expression is needed to (de)activate specific functions in individual cells. For instance, heart muscle cells have different functions than skin cells, thus require different genes to be expressed.


Analysis of single cells using EpiDamID

To understand how PTMs affect gene expression, first authors Franka Rang and Kim de Luca designed a new method to determine the location of the modifications. Using this approach, called EpiDamID, researchers can analyze single cells, whereas previous methods were only able to measure a large group of cells. Analysis on such a small scale results in knowledge on how DNA winding differs per cell, rather than information on the average DNA winding of many cells.

EpiDamID is based on DamID, a technique which is used to determine the binding location of certain DNA-binding proteins. Using EpiDamID, the binding location of specific PTMs on histone proteins can be detected in single cells. Compared to others, a great advantage of this technique is that researchers need very limited material. Furthermore, EpiDamID can be used in combination with other methods, such as microscopy, to study regulation of gene expression on different levels.


Future prospects

Following the development of this technique, the Kind group will focus on the role of PTMs from the point of view of developmental biology. Because single cells are analyzed using EpiDamID, only a limited amount of material is needed to generate enough data. This allows researchers to study the early development of organisms from its first cell divisions, when the embryo consists of only a few cells.





Rang, F. J.*, de Luca, K. L.*, de Vries, S. S., Valdes-Quezada, C., Boele, E., Nguyen, P. D., Guerreiro, I., Sato, Y., Kimura, H., Bakkers, J. & Kind, J. Single-cell profiling of transcriptome and histone modifications with EpiDamID. Molecular Cell, 2022.

*Authors contributed equally



Jop Kind is group leader at the Hubrecht Institute for Developmental Biology and Stem Cell Research and Oncode Investigator.


About the Hubrecht Institute

The Hubrecht Institute is a research institute focused on developmental and stem cell biology. It encompasses 21 research groups that perform fundamental and multidisciplinary research, both in healthy systems and disease models. The Hubrecht Institute is a research institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), situated on Utrecht Science Park. Since 2008, the institute is affiliated with the UMC Utrecht, advancing the translation of research to the clinic. The Hubrecht Institute has a partnership with the European Molecular Biology Laboratory (EMBL). For more information, visit


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.