News Release

Nanoscale bowtie antenna under optical and electrical excitations

Peer-Reviewed Publication

Compuscript Ltd

A new publication from Opto-Electronic Science; DOI  10.29026/oes.2022.210004 overviews nanoscale bowtie antenna under optical and electrical excitations.

 

Optical nanoantennas, capable of converting external electromagnetic fields into a confined energy and vice versa, play a very important role in optical field manipulation. Among them, the bowtie antenna has received extensive attention from researchers in related fields because of its strong field localization and enhancement under the optical or electrical excitation, enabling a host of application scenarios.

 

The authors review the widespread applications of optically/electrically driven nanoscale bowtie antennas summarizing the applications of optically excited bowtie antennas in the fields of optical imaging/trapping, nonlinear optics, nanolithography, and nano-sources. The principle, preparation, characterization of the electrically driven bowtie tunnel junction are discussed, and application prospects in ultrafast tunable optical nano-sources. This paper provides a comprehensive overview of bowtie based nanophotonics.

 

Article reference Jiang ZJ, Liu YJ, Wang L. Applications of optically and electrically driven nanoscale bowtie antennas. Opto-Electron Sci 1, 210004 (2022). doi: 10.29026/oes.2022.210004 

 

Keywords: bowtie antenna / near-field imaging / nanolithography / nonlinear / nanolaser / inelastic tunneling

# # # # # #

 

Dr. Liang Wang is a professor at University of Science and Technology of China (USTC). After obtaining a PhD in mechanical engineering from Purdue University, he has served as R&D manager and senior R&D engineer in Canon, Lam Research and IBM. In 2014, he joined USTC engaging in research in the fields of nano-optics, optoelectronic devices and integration. In recent years, the laboratory has published more than 50 papers and filed/authorized more than 30 national/international patents. In the field of near-infrared single-photon detection chips, he led the team to successfully develop 16-μm and 12-μm window chips, which passed the test and acceptance of quantum communication enterprises. The key parameter dark count of the chip is one order of magnitude lower than that of foreign competitors, exhibiting a better performance. In the fields of high-speed data interconnection, data center, and 3D sensing, the high-speed waveguide photodetector chip and the array-type single-photon lidar chip are developed.    

 

# # # # # #

Opto-Electronic Science (OES) is a peer-reviewed, open access, interdisciplinary and international journal published by The Institute of Optics and Electronics, Chinese Academy of Sciences as a sister journal of Opto-Electronic Advances (OEA, IF=9.682). OES is dedicated to providing a professional platform to promote academic exchange and accelerate innovation. OES publishes articles, reviews, and letters of the fundamental breakthroughs in basic science of optics and optoelectronics.

# # # # # #

 

More information: https://www.oejournal.org/oes

Editorial Board: https://www.oejournal.org/oes/editorialboard/list

OES is available on OE journals (https://www.oejournal.org/oes/archive)

Submission of OES may be made using ScholarOne (https://mc03.manuscriptcentral.com/oes)

CN 51-1800/O4

ISSN 2097-0382

Contact Us: oes@ioe.ac.cn

Twitter: @OptoElectronAdv (https://twitter.com/OptoElectronAdv?lang=en)

WeChat: OE_Journal

 

# # # # # #


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.