News Release

New articles for Geosphere posted online in May

Peer-Reviewed Publication

Geological Society of America

Boulder, Colo., USA: GSA’s dynamic online journal, Geosphere, posts articles online regularly. Locations studied this month include southwestern Greenland; Colorado; eastern Nevada; and the Canadian Cordillera. You can find these articles at https://geosphere.geoscienceworld.org/content/early/recent .

Evidence for a more extensive Greenland Ice Sheet in southwestern Greenland during the Last Glacial Maximum
Christopher M. Sbarra; Jason P. Briner; Brandon L. Graham; Kristin Poinar; Elizabeth K. Thomas ...
Abstract : The maximum extent and elevation of the Greenland Ice Sheet in southwestern Greenland during the Last Glacial Maximum (LGM, 26–19.5 ka) is poorly constrained. Yet, the size of the Greenland Ice Sheet during the LGM helps to inform estimates of past ice-sheet sensitivity to climate change and provides benchmarks for ice-sheet modeling. Reconstructions of LGM ice extents vary between an inner continental shelf minimum, a mid-shelf position, and a maximum extent at the shelf break. We use three approaches to resolve LGM ice extent in the Sisimiut sector of southwestern Greenland. First, we explore the likelihood of minimum versus maximum Greenland Ice Sheet reconstructions using existing relative sea-level data. We use an empirical relationship between marine limit elevation and distance to LGM terminus established from other Northern Hemisphere Pleistocene ice sheets as context for interpreting marine limit data in southwestern Greenland. Our analysis supports a maximum regional Greenland Ice Sheet extent to the shelf break during the LGM. Second, we apply a simple 1-D crustal rebound model to simulate relative sea-level curves for contrasting ice-sheet sizes and compare these simulated curves with existing relative sea-level data. The only realistic ice-sheet configuration resulting in relative sea-level model-data fit suggests that the Greenland Ice Sheet terminated at the shelf break during the LGM. Lastly, we constrain the LGM ice-sheet thickness using cosmogenic 10Be, 26Al, and 14C exposure dating from two summit areas, one at 381 m above sea level at the coast, and another at 798 m asl 32 km inland. Twenty-four cosmogenic radionuclide measurements, combined with results of our first two approaches, reveal that our targeted summits were likely ice-covered during the LGM and became deglaciated at ca. 11.6 ka. Inventories of in situ 14C in bedrock at one summit point to a small degree of inherited 14C and suggest that the Greenland Ice Sheet advanced to its maximum late Pleistocene extent at 17.1 ± 2.5 ka. Our results point to a configuration where the southwestern part of the Greenland Ice Sheet reached its maximum LGM extent at the continental shelf break.
View article : https://pubs.geoscienceworld.org/gsa/geosphere/article-abstract/doi/10.1130/GES02432.1/614013/Evidence-for-a-more-extensive-Greenland-Ice-Sheet

Post-Laramide, Eocene epeirogeny in central Colorado—The result of a mantle drip?
Lon D. Abbott; Rebecca M. Flowers; James Metcalf; Sarah Falkowski; Fatima Niazy
Abstract: The Southern Rocky Mountains first rose during the Laramide Orogeny (ca. 75–45 Ma), but today’s mountains and adjacent Great Plains owe their current height to later epeirogenic surface uplift. When and why epeirogeny affected the region are controversial. Sedimentation histories in two central Colorado basins, the South Park–High Park and Denver basins, shifted at 56–54 Ma from an orogenic to an epeirogenic pattern, suggesting central Colorado experienced epeirogeny at that time. To interrogate that hypothesis, we analyzed thermal histories for seven samples from central Colorado’s Arkansas Hills and High Park using thermochronometers with closure temperatures below ~180 °C, enabling us to track sample exhumation from ~5–7 km depth. Three samples are from the Cretaceous Whitehorn pluton, and four are Precambrian granitoids. All zircon and titanite (U-Th)/He dates (ZHe and THe) and one apatite fission-track (AFT) date are similar to the 67 Ma pluton emplacement age. Whitehorn dates using the lower-temperature apatite (U-Th)/He (AHe) thermochronometer are 55–41 Ma. These data require two exhumation episodes, one ca. 67–60 Ma, the second beginning at 54–46 Ma. The pluton reached the surface by 37 Ma, based on the age of volcanic tuff filling a pluton-cutting paleovalley. The Precambrian samples do not further refine this thermal history owing to the comparatively higher He closure temperature of their more radiation-damaged apatite. Laramide crustal shortening caused 67–60 Ma exhumation. Arkansas Hills shortening ended before 67 Ma, so shortening could not have caused the exhumation event that began 54–46 Ma; thermochronology supports the Eocene epeirogeny hypothesis. Epeirogeny affected >2.0 × 104 km2, from the Sawatch Range to the Denver Basin. We attribute epeirogeny to an Eocene mantle drip that likely triggered subsequent drips, causing younger exhumation events in adjacent areas.
View article: https://pubs.geoscienceworld.org/gsa/geosphere/article-abstract/doi/10.1130/GES02434.1/613637/Post-Laramide-Eocene-epeirogeny-in-central

A juvenile Paleozoic ocean floor origin for eastern Stikinia, Canadian Cordillera
Luke Ootes; Dejan Milidragovic; Richard Friedman; Corey Wall; Fabrice Cordey ...
Abstract: The Cordillera of Canada and Alaska is a type example of an accretionary orogen, but the origin of some terranes remains contentious (e.g., Stikinia of British Columbia and Yukon, Canada). Presented herein are igneous and detrital zircon U/Pb-Hf and trace-element data, as well as the first radiolarian ages from the Asitka Group, the basement to eastern Stikinia. The data are used to evaluate the role of juvenile and ancient crust in the evolution of Stikinia and the tectonic environment of magmatism. Two rhyolites are dated by U-Pb zircon at 288.64 ± 0.21 Ma and 293.89 ± 0.31 Ma, with εHf(t) = +10. Red chert contains radiolarians that are correlated with P. scalprata m. rhombothoracata + Ruzhencevispongus uralicus assemblages (Artinskian–Kungurian). Detrital zircon U/Pb-Hf from a rare Asitka Group sandstone have a mode at ca. 320 Ma and εHf(t) +10 to +16; the detrital zircon suite includes five Paleoproterozoic zircons (~5% of the population). Detrital zircons from a stratigraphically overlying Hazelton Group (Telkwa Formation) volcanic sandstone indicate deposition at ca. 196 Ma with zircon εHf(t) that are on a crustal evolution line anchored from the Asitka Group. Zircon trace-element data indicate that the Carboniferous detrital zircons formed in an ocean arc environment. The Proterozoic detrital zircons were derived from a peripheral landmass, but there is no zircon εHf(t) evidence that such a landmass played any role in the magmatic evolution of eastern Stikinia. The data support that eastern Stikinia formed on Paleozoic ocean floor during the Carboniferous to early Permian. Consistent with previous fossil modeling, zircon statistical comparisons demonstrate that Stikinia and Wrangellia were related terranes during the Carboniferous to Permian, and they evolved separately from Yukon-Tanana terrane and cratonic North America.
View article: https://pubs.geoscienceworld.org/gsa/geosphere/article-abstract/doi/10.1130/GES02459.1/613638/A-juvenile-Paleozoic-ocean-floor-origin-for

The low-angle breakaway system for the Northern Snake Range décollement in the Schell Creek and Duck Creek Ranges, eastern Nevada, USA: Implications for displacement magnitude
Sean P. Long; Jeffrey Lee; Nolan R. Blackford
Abstract: Documenting the kinematics of detachment faults can provide fundamental insights into the ways in which the lithosphere evolves during high-magnitude extension. Although it has been investigated for 70 yr, the displacement magnitude on the Northern Snake Range décollement in eastern Nevada remains vigorously debated, with published estimates ranging between <10 and 60 km. To provide constraints on displacement on the Northern Snake Range décollement, we present retrodeformed cross sections across the west-adjacent Schell Creek and Duck Creek Ranges, which expose a system of low-angle faults that have previously been mapped as thrust faults. We reinterpret this fault system as the extensional Schell Creek Range detachment system, which is a stacked series of top-down-to-the-ESE brittle normal faults with 5°–10° stratigraphic cutoff angles that carry 0.1–0.5-km-thick sheets that are up to 8–13 km long. The western portion of the Schell Creek Range detachment system accomplished ~5 km of structural attenuation and is folded across an antiformal culmination that progressively grew during extension. Restoration using an Eocene unconformity as a paleohorizontal marker indicates that faults of the Schell Creek Range detachment system were active at ~5°–10°E dips. The Schell Creek Range detachment system accommodated 36 km of displacement via repeated excision, which is bracketed between ca. 36.5 and 26.1 Ma by published geochronology. Based on their spatial proximity, compatible displacement sense, overlapping deformation timing, and the similar stratigraphic levels to which these faults root, we propose that the Schell Creek Range detachment system represents the western breakaway system for the Northern Snake Range décollement. Debates over the pre-extensional geometry of the Northern Snake Range décollement hinder an accurate cumulative extension estimate, but our reconstruction shows that the Schell Creek Range detachment system fed at least 36 km of displacement eastward into the Northern Snake Range décollement.
View article: https://pubs.geoscienceworld.org/gsa/geosphere/article-abstract/doi/10.1130/GES02482.1/613639/The-low-angle-breakaway-system-for-the-Northern

GEOSPHERE articles are available at https://geosphere.geoscienceworld.org/content/early/recent . Representatives of the media may obtain complimentary copies of GEOSPHERE articles by contacting Kea Giles at the address above. Please discuss articles of interest with the authors before publishing stories on their work, and please refer to GEOSPHERE in articles published. Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.

https://www.geosociety.org

# # #


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.