News Release

Catching microplastics with spider webs

A study by a research team of the University of Oldenburg, Germany, reveals that spider webs mirror varying levels of microplastic contamination of urban air

Peer-Reviewed Publication

University of Oldenburg

Microplastics can accumulate in spider webs.

image: A research team of the University of Oldenburg, Germany, has for the first time examined spider webs collected at bus stops on inner-city streets for microplastics. They found varying levels of plastic contamination, including tyre wear, depending on traffic levels. Sampling spider webs for microplastics may provide an easy means for environmental monitoring of urban air, the team concludes. view more 

Credit: Daniel Schmidt/ University of Oldenburg

Flies, mosquitoes, dust and even microplastics – spider webs catch things flying through the air. Researchers at the University of Oldenburg, Germany, have now for the first time examined the webs for microplastics on inner-city streets with varying levels of traffic. The team mainly found the plastic PET, presumably from textiles, as well as particles from the abrasion of car tyres and polyvinyl chloride (PVC). The amounts of plastic particles found depended on the location. Examining spider webs, the team concludes, is a simple and inexpensive means of monitoring urban air pollution by microplastics and can help identifying particularly polluted areas. The findings have been published in the journal Science of the Total Environment.

"Spiders are found all over the world, including in cities. Their sticky webs are an ideal trap for anything that floats through the air," explains Dr Barbara Scholz-Böttcher. The microplastics expert at the University's Institute of Chemistry and Biology of the Marine environment (ICBM) was head of the study. Previous studies have shown that pollutants such as heavy metals or magnetic particles get stuck in the webs, she adds. "However, no one has yet examined spider webs for microplastics," says the geochemist – even though the air we breathe is increasingly contaminated with microplastics.

To find out whether microplastics can be detected in spider webs and whether there are certain distribution patterns, the team collected spider webs from the upper area of semi-covered bus stops at different times. The bus stops were located along roads with different levels of traffic in the city of Oldenburg in north-western Germany. The samples were prepared in the laboratory and the particles adhering to the webs were concentrated on filters.

Fibres from textiles and soot particles

The team first examined the filters microscopically and found, for example, fibres presumably stemming from textiles, as well as soot particles. They then heated the samples at very high temperatures in the absence of oxygen (pyrolysis) and separated the resulting plastic fragments using a gas chromatograph. A downstream mass spectrometer made it possible to assign and determine the different types of plastic.

The result: "All the spider webs were contaminated with microplastics," reports Isabel Goßmann, who was involved in the study as part of her PhD-thesis. In some cases, the plastic content even accounted for a good tenth of the total weight of a web. Almost 90 per cent of the plastic consisted of PET (polyethylene terephthalate), PVC and material from car tyres. The proportion of tyre debris varied greatly – depending on the traffic on the adjacent road.

Simple alternative for assessing microplastic contamination in the air

"Our results also indicate that the abrasion of road markings is another important source contributing to the microplastic load along roads," explains Scholz-Böttcher. The researchers also found evidence that the small plastic particles accumulate surprisingly quickly in the spider webs. According to Scholz-Böttcher, the method represents a simple alternative to complex measurements for comparing the microplastic content present in the immediate ambient air. This can be particularly important in the context of further toxicological investigations.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.