News Release

Miniaturized highly sensitive ultrasound sensor for photoacoustic imaging

Peer-Reviewed Publication

Compuscript Ltd

Fig 1

image: . (a) The schematic diagram of highly sensitive ultrasound detection system based on the microfiber. The schematic diagram (b) and micrograph (c) of the microfiber ultrasound sensor. Sensitivity (d) and response bandwidth (e) of the sensor. view more 

Credit: OEA

A new publication from Opto-Electronic Advances; DOI 10.29026/oea.2022.200076 discusses miniaturized highly sensitive ultrasound sensor for photoacoustic imaging.

 

Photoacoustic imaging generates ultrasound waves by irradiating biological tissues with pulses or modulated continuous lasers. Ultrasound sensors are used to capture ultrasound signals in a distributed manner. Then, the light absorption distribution of biological tissues can be reconstructed with the help of image reconstruction algorithms. Compared with optical imaging, photoacoustic imaging provides higher spatial resolution, greater penetration depth and selective optical absorption contrast, thereby enabling detailed visualization of the distribution of hemoglobin, lipid, melanin, and other chromophores in biological tissues.

 

As the key element of photoacoustic imaging system, ultrasound sensors directly decide the imaging performance. The mainstream ultrasound sensors are based on the piezoelectric effect, which converts mechanical wave into electric charges. The sensitivity of such sensors is related to the size of piezoelectric elements. To achieve sufficient sensitivity, millimeter scale piezoelectric elements are required, which limits the miniaturization of the device. As a special optical fiber with a size of several microns or hundreds of nanometers, microfiber has the characteristics of small size, large evanescent field and high sensitivity to environment. So, can it be applied to ultrasound sensing with high sensitivity?

 

The research group of Prof. Qizhen Sun from Huazhong University of Science and Technology proposed a miniaturized microfiber ultrasound sensor. Highly sensitive ultrasound detection was demonstrated using microfiber with large evanescent field and environmental sensitivity. Further, the photoacoustic imaging system based on the microfiber sensor was firstly realized, to the best of our knowledge.

 

Researchers optimized the dimeter of microfiber to 7μm in view of the larger evanescent field. As shown in Fig.1b, the sensitivity of the sensor is further enhanced by using the Polydimethylsiloxane (PDMS) material with high elastic-optical coefficient to encapsulate the microfiber. When the ultrasound wave is applied on the sensor, the refractive index of PDMS will change correspondingly due to the elastic-optical effect, resulting in the modulation of the effective refractive index of the microfiber. A Mach-Zehnder interferometer is constructed to demodulate the phase changes of the interrogation laser induced by the incident ultrasound waves. A feedback stabilizer based on Proportion Integration Differentiation (PID) method is used to compensate the low frequency fluctuation caused by noise. The experimental results show that the sensitivity of linear microfiber ultrasound sensor is improved by one order of magnitude compared with standard single mode fiber sensor. The sensor exhibits a low noise equivalent pressure of 153Pa and a broad response bandwidth up to 14MHz (-10dB). In addition, the sensor can be used for the detection of weaker signals, by optimizing the microfiber and detection system to improve the sensitivity and bandwidth of the sensor.

The research group also demonstrated a photoacoustic imaging system based on the microfiber sensor. The performance of the imaging system is evaluated by imaging three human hairs. The signal-to-noise ratio (SNR) of the system could reach 31dB even at the depth of 12mm. The axial and lateral resolutions are 65μm and 250μm at 5mm depth, respectively. This technology is expected for high resolution, large imaging depth and side photoacoustic/ultrasound imaging, which has important significance and application value in human health examination and biological science research.

Article reference: Yang LY, Li YP, Fang F, Li LY, Yan ZJ et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076

Keywords: ultrasound sensor / microfiber / photoacoustic tomography

# # # # # #

 

The research group of Prof. Qizhen Sun from Huazhong University of Science and Technology is engaged in the research of microstructure optical fiber devices, sensing technology and application. Prof. Qizhen Sun has presided over a number of scientific research projects, including National Natural Science Foundation for Distinguished Young Scholars, National Key Research and Development Program of China, Science Fund for Creative Research Groups of the Natural Science Foundation of Hubei. The group has published more than 100 papers in Optica, Opto-Electronic Advances, Sensors and Actuators B and other SCI journals. The research achievements have been promoted and applied in many fields. She has won the first prize of Technical Invention of China Communication Society/Second prize of Natural Science, the first prize of Innovative Products of China Optical Engineering Society and the Gold Medal of Geneva International Invention Exhibition.

 

# # # # # #

Opto-Electronic Advances (OEA) is a high-impact, open access, peer reviewed monthly SCI journal with an impact factor of 9.682 (Journals Citation Reports for IF 2020). Since its launch in March 2018, OEA has been indexed in SCI, EI, DOAJ, Scopus, CA and ICI databases over the time and expanded its Editorial Board to 36 members from 17 countries and regions (average h-index 49).

The journal is published by The Institute of Optics and Electronics, Chinese Academy of Sciences, aiming at providing a platform for researchers, academicians, professionals, practitioners, and students to impart and share knowledge in the form of high quality empirical and theoretical research papers covering the topics of optics, photonics and optoelectronics.

 

# # # # # #

 

More information: http://www.oejournal.org/oea

Editorial Board: http://www.oejournal.org/oea/editorialboard/list

All issues available in the online archive (http://www.oejournal.org/oea/archive).

Submissions to OEA may be made using ScholarOne (https://mc03.manuscriptcentral.com/oea).

ISSN: 2096-4579

CN: 51-1781/TN

Contact Us: oea@ioe.ac.cn

Twitter: @OptoElectronAdv (https://twitter.com/OptoElectronAdv?lang=en)

WeChat: OE_Journal

 

# # # # # #


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.