News Release

Facial similarity influences perceptions of trustworthiness for same-sex interactions

Researchers from Osaka University find that gender influences face-based perceptions of trustworthiness

Peer-Reviewed Publication

Osaka University


image: Relationship between trustworthiness and face dissimilarity distance. view more 

Credit: 2022, Nakano T & Yamamoto T, You trust a face like yours. Humanities and Social Sciences Communications

Osaka, Japan – Throughout history, people have been more likely to trust strangers who resembled them in appearance or demographics. But now, researchers from Japan have found that ratings of trustworthiness vary depending on the sex of the stranger and observer.

In a study recently published in Humanities and Social Sciences Communications, researchers from Osaka University have revealed that while resemblance of facial features plays an important role in ratings of trustworthiness by observers, this was only the case when the stranger was the same sex as the observer. When the stranger was the opposite sex, facial similarity had no effect on ratings of trustworthiness.

Given that the similarity between an observer’s face and that of another person is considered to influence perceptions of their trustworthiness, ratings of trustworthiness can be used to signal facial similarity. This is important because the specific qualities that are used to evaluate facial similarity, such as shape, size, and the position and structure of facial features, are unknown.

“Because trustworthiness can indicate a high degree of facial similarity, we wanted to examine how estimations of facial similarity made by a deep learning system were correlated with real-life ratings of trustworthiness,” says lead author of the study Tamami Nakano.

To do this, the researchers asked a group of volunteers to view photos of faces of different individuals and rate their trustworthiness. Then, they used a deep learning neuronal network to determine the degree of similarity between each face photo and the face of each evaluator, and checked to see if the degree of similarity matched the ratings of trustworthiness.

“The results were surprising,” explains Tamami Nakano. “While people tended to rate individuals with faces that were similar to themselves as more trustworthy, this was not the case when the faces were evaluated by someone of the opposite sex.”

Thus, facial similarity is an important factor affecting social judgments for same-sex interactions.

“Our findings indicate that it is possible to quantify the degree to which two faces are similar or different via face recognition performed by an artificial neural network,” says Takuto Yamamoto.

These findings have many potential applications for online technologies. For example, systems that can automatically estimate feature vectors from faces could make it possible to generate personalized suggestions and matches in things like peer to peer (P2P) lending, member matching in simple notification services (SNS), and the creation of avatars that look more trustworthy.


The article, “You trust a face like yours” was published in Humanities and Social Sciences Communications at DOI:


About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.