News Release

UMass Amherst researcher uses graphene for same-time, same-position biomolecule isolation and sensing

The work, recently published in the journal ACSNano, could allow lab-on-a-chip devices to become smaller and achieve results faster

Peer-Reviewed Publication

University of Massachusetts Amherst

Schematic2

image: A stable pH gradient is generated between a pair of biased graphene microelectrodes. Molecules (red particles) are focused into a narrow band—the focusing plane—between the microelectrodes upon the pH-gradient generation. The focused molecules are detected at high sensitivity by pre-placing specific recognizers (green particles) at the focusing plane. view more 

Credit: UMass Amherst

AMHERST, Mass. — New research led by University of Massachusetts Amherst assistant professor Jinglei Ping has overcome a major challenge to isolating and detecting molecules at the same time and at the same location in a microdevice. The work, recently published in ACSNano, demonstrates an important advance in using graphene for electrokinetic biosample processing and analysis and could allow lab-on-a-chip devices to become smaller and achieve results faster.

The process of detecting biomolecules has been complicated and time consuming. “We usually first have to isolate them in a complex medium in a device and then send them to another device or another spot in the same device for detection,” says Ping, who is in the College of Engineering’s Mechanical and Industrial Engineering Department and is also affiliated with the university’s Institute of Applied Life Sciences. “Now we can isolate them and detect them at the same microscale spot in a microfluidic device at the same time — no one has ever demonstrated this before.”

His lab achieved this advance by using graphene, a one-atom-thick honeycomb lattice of carbon atoms, as microelectrodes in a microfluidic device.

“We found that, compared to typical inert-metal microelectrodes, the electrolysis stability for graphene microelectrodes is more than 1,000 times improved, making them ideal for high-performance electrokinetic analysis,” he says.

Also, Ping added, since monolayer graphene is transparent, “we developed a three-dimensional multi-stream microfluidic strategy to microscopically detect the isolated molecules and calibrate the detection at the same time from a direction normal to the graphene microelectrodes.”

The new approach developed in the work paves the way to the creation of lab-on-a-chip devices of maximal time and size efficiencies, Ping says. Also, the approach is not limited to analyzing biomolecules and can potentially be used to separate, detect and stimulate microorganisms such as cells and bacteria.

Co-authors on the paper, “Graphene-Enabled High-Performance Electrokinetic Focusing and Sensing,” are Ping’s students, Xiao Fan (first author) and Xiaoyu Zhang. The research is supported by Ping’s 2020 Young Investigator Program (YIP) award from the Air Force Office of Scientific Research (AFOSR). The goal of Ping’s YIP project is to develop a new technology for long-term, high-spatiotemporal resolution, high-sensitivity electrical detection and stimulation of large-scale biosystems.

The paper can be found here: ACSNano


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.