News Release

Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries

Peer-Reviewed Publication

Dalian Institute of Chemical Physics, Chinese Academy Sciences

Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries

image: The enhanced lithiophilic properties and the rigid array structure of Al2O3-CNTA/3DG synergistically induce dendrite-free and stable Li anode. The LOBs full battery assembled with the Al2O3-CNTA/3DG-Li anode and CNTA/3DG cathode achieves a long-term cycling stability. view more 

Credit: Journal of Energy Chemistry

Recently, Dr. Yue Li and co-workers (from Tianjin University) prepared lithiophilic aluminum oxide (Al2O3) seeds induced rigid carbon nanotube arrays/three-dimensional graphene (Al2O3-CNTA/3DG) as an effective host material for the Li anode of lithium-oxygen batteries (LOBs). It was found that the Al2O3 nanoparticles greatly enhanced the rigidity of CNTA, yielding significant inhibition of Li dendrite growth. Additionally, lithiophilic Al2O3 nanoparticles reacted with Li+ to form LiAlO2 nanoparticles, which facilitated Li+ transport and stabilized the solid electrolyte interphase (SEI) film. Finally, the LOB assembled with the Al2O3-CNTA/3DG-Li anode and CNTA/3DG cathode exhibited enhanced redox kinetics and could be stably cycled 160 times at a current density of 100 mA g-1 and limited capacity of 500 mAh g-1. This work provided a new strategy for solving the issues of Li dendrite growth and short cycling life for LOBs.

This work was published in the Journal of Energy Chemistry as a research article entitled “Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries”.

 

About the journal

The Journal of Energy Chemistry is a publication that mainly reports on creative researches and innovativeapplications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy,as well as the conversions of biomass and solar energy related with chemical issues to promote academicexchanges in the field of energy chemistry and to accelerate the exploration, research and development of energyscience and technologies.

 

At Elsevier

https://www.sciencedirect.com/journal/journal-of-energy-chemistry

 

Manuscript submission

https://www.editorialmanager.com/jechem/default.aspx


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.