News Release

Nanodiamonds are a cell's best friend

KyotoU creates smallest nanodiamonds for nanoscale temperature sensing

Peer-Reviewed Publication

Kyoto University

Detonation nanodiamonds facilitate nano-scale thermometry

image: Linear red shift is observed with increasing temperature in detonated nanodiamonds with color centers. view more 

Credit: KyotoU/Norikazu Mizuochi

Kyoto, Japan -- Nanodiamonds' repertoire of applications expands constantly, including everything from ultra-fine coatings to precise drug delivery.

Now, Kyoto University and Daicel Corporation have developed nanodiamonds to detect temperatures on the nanoscale inside cells and organelles.

"The functions and activities of living cells will closely relate to the non-uniform temperature distribution and localized temperature changes within these biosystems," notes author Norikazu Mizuochi.

Nanodiamonds with silicon-vacancy color centers, or SiV centers, are of a new generation that can detect temperature changes inside cells by gauging luminescence.

"The peak wavelength of the luminescence spectrum shifts linearly, which is mostly consistent with the spectral behavior of SiVs in bulk diamonds and shows us the possible future of all-optical nanoscale thermometry," says the author.

Alternatively, color-center-containing nanodiamonds, especially nitrogen-vacancy centers, demonstrate high-temperature sensitivity when using laser light and microwave irradiation, and are advantageous in biological applications for their low cytotoxicity and stable luminescence.

Typically, temperature-measurable nanoparticles are larger than 100 nm -- relatively massive in the nanoscale -- potentially damaging cells. Mizuochi's team, however, has succeeded in creating the smallest nanodiamond thermometry with a mean size of 20 nm, including other color centers such as NV centers. This nanoparticle enables smoother entry into organelles as well as temperature sensing to sub-kelvin precision.

"To investigate the temperature response of our polymer-coated and size-selected SiV-containing nanodiamonds, or SiV-DNDs, we used a temperature-controlled microscope to measure the luminescence spectrum of an array of SiV-DNDs," adds Mizuochi.

Combining this technology with multi-color imaging and improving temperature sensing by optimizing the number of SiV centers per particle are part of the next stage in the research team's development of high-precision nanodiamonds.

###

The paper "All-optical nanoscale thermometry based on silicon-vacancy centers in detonation nanodiamonds" appeared on 13 July 2022 in Carbon, with doi: 10.1016/j.carbon.2022.06.076 

About Kyoto University

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.