News Release

From magnetic navigation to magnetic targeting: magnetosome-like structure with highly tumor tissue penetration efficiency was constructed

Peer-Reviewed Publication

Hefei Institutes of Physical Science, Chinese Academy of Sciences

From Magnetic Navigation to Magnetic Targeting: Magnetosome-like Structure with Highly Tumor Tissue Penetration Efficiency was Constructed

image: Magnetic navigation of magnetotactic bacterial and the magnetosome Chains. view more 

Credit: MA Kun

In a paper published in Proceedings of the National Academy of Sciences of the United States of America (PNAS) recently, a team led by Prof. WANG Junfeng from the High Magnetic Field Laboratory (HMFL), Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences, biomimetically synthesized soft ferromagnetic nanoparticles with high magnetic targeting and tumor tissue penetration based on studying the biomineralization mechanism of natural "biocompass" ― magnetotactic bacteria.

Targeted delivery of anti-tumor drugs can effectively improve the efficacy and minimize the toxicity of drugs. Due to the limitations of the complexity of the tumor microenvironment, the average tumor targeting efficiency of nanodrugs is less than 1%, which constitutes one of the bottlenecks in tumor therapy.

Animals like pigeons, turtles, lizards can use the geomagnetic field to navigate. The bacteria, after obtaining iron from the surrounding environment, can move directionally along the direction of magnetic field in the geomagnetic field or artificial magnetic field. The magnetosomes offer a wide range of application prospects thanks to their obvious advantages in magnetic properties, biocompatibility and stability.

However, the natural magnetosome particles are easy to accumulate and precipitate in the external environment, which hinders their ability to penetrate the lesion area and the potential danger of deposition in the blood vessels.

In this work, researchers proposed a new strategy for biomimetic synthesis of magnetosomes. They constructed a magnetosome-like nanoreactor, and reconstructed the microenvironment of magnetosomes biomineralization of magnetotactic bacteria in vitro.

"The magnetosome-like nanoparticles synthesized with this method performed excellently," said MA Kun, first author of the paper, "The DSPE-mPEG–coated magnetosome-like magnetic nanoparticles (MNPs) successfully penetrated the lesion area of a tumor mouse model." The experimental findings demonstrated the improvement by an order of magnitude in the targeting and penetrability of biomimetic magnetosomes in tumor tissues compared with other magnetic nanodrugs.

This work not only provided an efficient carrier for magnetic targeting delivery of nanodrugs, and but also expanded a new model system for studying the biomineralization mechanism of magnetotactic bacteria in vitro.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.