News Release

Quantum algorithms save time in the calculation of electron dynamics

Peer-Reviewed Publication

Helmholtz-Zentrum Berlin für Materialien und Energie

Orbitals

image: The calculations allow the electron densities and the changes after excitation to be determined with high spatial and temporal resolution. Here, the example of the lithium hydride molecule shows the shift of electron density from cyanide (red) to lithium (green) during a laser pulse. view more 

Credit: F. Langkabel / HZB

"These quantum computer algorithms were originally developed in a completely different context. We used them here for the first time to calculate electron densities of molecules, in particular also their dynamic evolution after excitation by a light pulse," says Annika Bande, who heads a group on theoretical chemistry at HZB. Together with Fabian Langkabel, who is doing his doctorate with Bande, she has now shown in a study how well this works.

Error-free quantum computer

"We developed an algorithm for a fictitious, completely error-free quantum computer and ran it on a classical server simulating a quantum computer of ten Qbits," says Fabian Langkabel. The scientists limited their study to smaller molecules in order to be able to perform the calculations without a real quantum computer and to compare them with conventional calculations.

Faster computation

Indeed, the quantum algorithms produced the expected results. In contrast to conventional calculations, however, the quantum algorithms are also suitable for calculating significantly larger molecules with future quantum computers: "This has to do with the calculation times. They increase with the number of atoms that make up the molecule," says Langkabel. While the computing time multiplies with each additional atom for conventional methods, this is not the case for quantum algorithms, which makes them much faster.

Photocatalysis, light reception and more

The study thus shows a new way to calculate electron densities and their "response" to excitations with light in advance with very high spatial and temporal resolution. This makes it possible, for example, to simulate and understand ultrafast decay processes, which are also crucial in quantum computers made of so-called quantum dots. Also predictions about the physical or chemical behaviour of molecules are possible, for example during the absorption of light and the subsequent transfer of electrical charges. This could facilitate the development of photocatalysts for the production of green hydrogen with sunlight or help to understand processes in the light-sensitive receptor molecules in the eye.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.