News Release

How could the Aurora Borealis affect energy grids when renewables are added to the mix?

University of Oklahoma engineer will use an NSF CAREER award to better understand how geomagnetic storms can impact energy infrastructure.

Grant and Award Announcement

University of Oklahoma

Paul Moses

image: University of Oklahoma researcher Paul Moses, Ph.D., has received Faculty Early Career Development Award, known as a CAREER award, from the National Science Foundation to better understand how chaotic grid disturbances from events like solar storms impact energy infrastructure. view more 

Credit: Provided by the University of Oklahoma

As the world transitions toward more renewable energy resources and deals with the consequences of a changing climate, the resiliency of energy infrastructure is becoming ever more urgent. University of Oklahoma researcher Paul Moses, Ph.D., has received a Faculty Early CAREER Development award from the National Science Foundation to better understand how chaotic grid disturbances from events like solar storms impact energy infrastructure.

In one of the first documented incidents, the 1859 Carrington Event, an extreme solar flare caused telegraph systems to go haywire worldwide. Likewise the magnetism generated during Aurora Borealis events can damage electrical power grids and space satellites, as it did on March 1989 in Quebec, Canada.

“Solar events like the Aurora Borealis are created by what we call geomagnetic storms, which are caused by solar flare activity and solar winds. When that hits the atmosphere, it creates electromagnetic disruptions, which in turn affect the power grid,” Moses said. “That has been well studied for a long time, but not when we combine renewable energy systems, like solar and wind power, and battery storage, into those systems. There are a lot of knowledge gaps in how those disturbances affect the power grids in a renewable energy rich environment.”

Moses, an assistant professor in the School of Electrical and Computer Engineering, Gallogly College of Engineering, will use the five-year CAREER award to advance the study of these kinds of chaotic grid disturbances – their underlying physics and characteristics, considering high volumes of renewable energy added to legacy power grid infrastructure, to improve mitigation strategies that could help prevent grid failure.

“A lot of the components in our power grid are based on century-old design principles like the transformer, which is the device that changes voltages. The transformer is everywhere, and it is not going away for decades to come, so we're stuck, in a way, with these legacy components. We want to learn how they respond to this renewable energy rich environment coupled with all these disturbances like geomagnetic storms and that presents new burdens and stressors,” he said.

Moses anticipates three phases to the project. To begin, he is developing models and software to simulate geomagnetic storms and their impact on the grid. By modeling the aging of legacy energy infrastructure components and the impacts of geomagnetic storms, he hopes to better understand potential impacts to the lifespan and performance of critical components to improve grid resiliency and rapidly recovery.

“When you have solar, wind and battery storage, it has to be connected to the grid through what we call inverters, or solid-state power converters,” Moses said. “That presents a new uncertainty because this is something that's cropped up in recent years. How does this new technology associated with renewables work with the old technology – the archaic infrastructure? The grid fundamentally was not designed to operate with these devices, so it raises new uncertainties.”

Whereas the first phase of the project is aimed at understanding ways in which to mitigate or prevent grid failure, the second phase is to improve detection of electrical transients from geomagnetic storms or other chaotic grid disturbances.

“A lot of these phenomena are very difficult to detect and go unnoticed until it's too late, so the next phase is to look at better detection of these disturbances and try to anticipate a problem before it causes irreversible damage,” he said.

The third phase moves the research from computer simulations to the lab, aiming to validate the modeling with experimental testing, which will also provide opportunities for Moses’ students to contribute to the experimentation.

“Ultimately, this project is aimed at de-risking the integration of sustainable energy technologies to realize a more robust, resilient and self-healing energy infrastructure for greater economic prosperity, health and living standards for society,” he said.

Woven throughout each stage of the project is educational outreach, including the development of STEM-oriented educational resources for K-12 students to gain access to electrical energy-related curriculum.

###

About the Project
The project, “CAREER: Untangling Chaotic Electromagnetic Transient Phenomena in Power Systems Mixed with Volatile Inverter-Based Renewable Energy Resources,” is funded by the National Science Foundation, award no. 2237527. The project began Feb. 15 and is expected to conclude Jan. 31, 2028.

About the University of Oklahoma Office of the Vice President for Research and Partnerships 

The University of Oklahoma is a leading research university classified by the Carnegie Foundation in the highest tier of research universities in the nation. Faculty, staff and students at OU are tackling global challenges and accelerating the delivery of practical solutions that impact society in direct and tangible ways through research and creative activities. OU researchers expand foundational knowledge while moving beyond traditional academic boundaries, collaborating across disciplines and globally with other research institutions as well as decision makers and practitioners from industry, government and civil society to create and apply solutions for a better world. Find out more at ou.edu/research

About the University of Oklahoma

Founded in 1890, the University of Oklahoma is a public research university located in Norman, Oklahoma. OU serves the educational, cultural, economic and health care needs of the state, region and nation. For more information visit www.ou.edu.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.