News Release

Thermal cloak passively keeps electric vehicles cool in the summer and warm in the winter

Peer-Reviewed Publication

Cell Press

Scalable-manufactured Janus thermal cloak and photographs of the EVs with and without the cloak in the daytime

image: Scalable-manufactured Janus thermal cloak and photographs of the EVs with and without the cloak in the daytime view more 

Credit: Huaxu Qiao

When an electric vehicle is parked outside, its temperature can swing wildly from day to night and season to season, which can lead to deterioration of the battery. To dampen these fluctuations and extend the battery’s lifespan, researchers have designed an all-season thermal cloak that can cool an electric vehicle by 8°C on a hot day and warm it by 6.8°C at night. The cloak, made predominantly of silica and aluminum, can do so passively without outside energy input and operates without any modification between hot or cold weather. This prototype is described July 11 in the newly launched Device, an application-oriented sister journal to Matter, Joule, and Cell

“The thermal cloak is like clothes for vehicles, buildings, spacecrafts, or even extraterrestrial habitats to keep cool in summer and warm in winter,” says senior author Kehang Cui, a materials scientist at Shanghai Jiao Tong University. 

To dampen natural temperature fluctuations, the cloak isolates the car—or any other object beneath it—from the surrounding environment. The cloak has two components: an outer layer which efficiently reflects sunlight and an inner layer that traps heat inside. Whatever heat the outer layer does absorb is emitted in such a way that it can be readily dissipated to outer space. This design earns it the name of Janus thermal cloak, inspired by the two-faced Roman god Janus.

“The cloak works basically the same way the earth cools down, through radiative cooling” says Cui. “The earth is covered by the atmosphere, and the atmosphere is transparent to a certain range of electromagnetic energy we radiate.”  

While this process is desirable in the summer, it would make the car colder during winter months. “You have to develop something that can turn on and off by itself without external energy input, and that's extremely difficult,” says Cui. 

Cui and his team designed the cloak to automatically counteract this effect in the winter. The cloak employs an effect called “photon recycling”—essentially, any energy that is trapped under the cloak will bounce back and forth between the car and cloak rather than escape to the surroundings outside.  

To assess the performance of the thermal cloak, the researchers conducted tests on electric vehicles parked outside under typical ambient conditions in Shanghai. While the cabin temperature of an uncovered car reached 50.5°C at mid-day, the cabin of the cloak-covered car reached 22.8°C—27.7°C lower than the uncovered car and 7.8°C lower than the temperature outside. At midnight, the covered car stayed 6.8°C higher than the temperature outside, never dropping below 0°C. 

“This is the first time that we could achieve warming above the ambient temperature by almost 7°C during winter nights,” says Cui. “This is also kind of surprising to us—there’s no energy input or sunshine and we can still get warming.”  

The outer component of the cloak is made of thin fibers of silica that were then coated in flakes of hexagonal boron nitride, a ceramic material similar to graphite that enhances the fibers’ solar reflectivity. These fibers are then braided and woven together into a fabric and adhered to the inner layer, which is made of aluminum alloy. 

The team purposefully designed the cloak to make scaling up production easier in the future. For example, using thinner silica fibers would have increased solar reflectivity, but they would be weaker and couldn’t be made with high-volume, industrial-level production techniques already available. In addition, the materials used, including the aluminum, silica, and boron nitride, are all low-cost and make the cloak lightweight, durable, and fire-retardant. 


This work was supported by the Science and Technology Commission of Shanghai Municipality and Shanghai Jiao Tong University.

Device, Qiao et al. “Scalable and durable Janus thermal cloak for all-season passive thermal regulation”

Device (@Device_CP), is a physical science journal from Cell Press along with Chem, Joule, and Matter. Device aims to be the breakthrough journal to support device- and application-oriented research from all disciplines, including applied physics, applied materials, nanotechnology, robotics, energy research, chemistry, and biotechnology under a single title that focuses on the integration of these diverse disciplines in the creation of the cutting-edge technology of tomorrow. Visit To receive Cell Press media alerts, contact

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.