Scientists reveal process of gas accretion in massive star formation
Peer-Reviewed Publication
Chinese Academy of Sciences Headquarters
Institute of Atmospheric Physics, Chinese Academy of Sciences
Chinese Academy of Sciences Headquarters
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Institute of Atmospheric Physics, Chinese Academy of Sciences
Dalian Institute of Chemical Physics, Chinese Academy Sciences
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Chinese Academy of Sciences Headquarters
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Updates every hour. Last Updated: 19-Sep-2025 18:11 ET (19-Sep-2025 22:11 GMT/UTC)
Updates every hour. Last Updated: 19-Sep-2025 18:11 ET (19-Sep-2025 22:11 GMT/UTC)
A research team has studied the development of the Shanghai Typhoon Model from a traditional physics-based regional model toward a data-driven, machine-learning typhoon forecasting system. They summarize the model’s performance in Typhoon Danas in 2025, noting that a hybrid Shanghai Typhoon Model provides a significant advancement in forecast accuracy. Their paper outlines a roadmap for evolving the physically driven Shanghai Typhoon Model into a purely data-driven, regional machine-learning weather-prediction model designed for typhoon prediction.