Public Release: 

Let's talk about sex chromosomes

Why male and female cells behave differently after being reprogrammed into stem cells

KU Leuven

Using a patient's skin cells to restore his vision? Thanks to a promising technique known as cell reprogramming, this science fiction scenario may soon become reality. The technique allows scientists to make stem cells from, for instance, a patient's skin cells. These stem cells - known as induced pluripotent stem cells or iPS cells - can be turned into almost any specialised cell type of the human body, including the cells we need to see.

Working with iPS cells has numerous advantages compared with other methods. For one thing, you use adult cells to make iPS cells, so you no longer need embryos. Furthermore, the reprogrammed cells have the patient's DNA, so the body will be less likely to reject them.

"Cell reprogramming is revolutionising medicine, yet surprisingly little is known about how it actually works," says stem cell expert Vincent Pasque, assistant professor at KU Leuven, Belgium.

Together with Kathrin Plath from UCLA, Vincent Pasque from KU Leuven led an international study into how adult cells reprogram to iPS cells. To investigate the different stages of the reprogramming process, the researchers separated male and female cells to examine them side by side.

The researchers discovered that female and male cells behave differently after the reprogramming process and that this is due to their different number of X chromosomes - two in female cells and one in male cells.

Vincent Pasque explains: "In a normal situation, one of the two X chromosomes in female cells is inactive. But when these cells are reprogrammed into iPS cells, the inactive X becomes active. So the female iPS cells now have two active X chromosomes, while males have only one. We now know that this explains the different behaviour of male and female cells after reprogramming because, over time, female cells lose one of the two X chromosomes and start behaving more or less like male iPS cells."

The differences between male and female iPS cells are most pronounced for one of the key processes in the field of epigenetics: DNA methylation, a modification that changes the activity of a DNA segment without changing its sequence. The researchers found that DNA methylations are erased in female iPS cells but not in male cells.

"Our study also indicates that the path towards iPS cells involves the use of specific control switches on DNA called enhancers," adds Dr Constantinos Chronis from UCLA.

Vincent Pasque concludes: "Our results show that studying male and female cells separately is key to a better understanding of how iPS cells are made. And we really need to understand the process if we want to create better disease models and to help the millions of patients waiting for more effective treatments."

###

More information

The study was supported by the California Institute for Regenerative Medicine, the Research Foundation - Flanders (FWO) Odysseus Programme, KU Leuven, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, the Stem Cell Institute at KU Leuven, and the New York Stem Cell Foundation.

About KU Leuven

KU Leuven is Europe's most innovative university in the latest Reuters ranking. Located in Belgium, it is dedicated to research, education, and service to society. KU Leuven is a founding member of the League of European Research Universities (LERU) and has a strong European and international orientation. Its scientists conduct basic and applied research in a comprehensive range of disciplines. The university welcomes more than 50,000 students from over 140 countries. The KU Leuven Doctoral Schools train approximately 4,500 PhD students. http://www.kuleuven.be/english

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.