News Release

Manipulating gene expression in neurons with CRISPR

Neuron-optimized genome editing technology enables new ways to study genetic influences on brain health and disease

Peer-Reviewed Publication

Society for Neuroscience

Rat Nucleus Accumbens

image: CRISPR activation enables flexible upregulation of selected genes in cultured neurons and the adult nervous system. Here, neurons in the rat nucleus accumbens (a key brain reward structure) were targeted for CRISPR-based gene activation. Fluorescent reporter molecules mark the protein product of a gene targeted for activation (green), neurons expressing a CRISPR guide RNA (red), and DNA (blue). view more 

Credit: Katherine Savell & Nancy Carullo, Day Lab, University of Alabama at Birmingham

Neuroscientists have used CRISPR/Cas9 genome editing technology to regulate genes in the rat brain. Described in eNeuro, this technique paves the way for researchers to probe genetic influences on brain health and disease in model organisms that more closely resemble human conditions.

Studying genes in the brain is expensive and time-consuming, often relying on transgenic animals, such as fruit flies and mice, designed to assess one gene at a time. Despite rapid advances in the development of powerfully precise CRISPR/Cas9 systems, adapting these for use in the central nervous system has proved challenging.

A neuron-optimized CRISPR activation system developed by Jeremy Day and colleagues overcomes these challenges. The researchers demonstrate both in diverse cultured cells and in multiple regions of the live rat brain that their molecular tool is capable of quickly and efficiently increasing expression of targeted genes involved in learning and memory, plasticity, and neuronal development.

###

Article: A neuron-optimized CRISPR/dCas9 activation system for robust and specific gene regulation*
DOI: https://www.eneuro.org/lookup/doi/10.1523/ENEURO.0495-18.2019
Corresponding author: Jeremy Day (The University of Alabama at Birmingham, USA), jjday@uab.edu

*A preprint of this manuscript has been posted on bioRxiv: https://doi.org/10.1101/371500

About eNeuro

eNeuro, the Society for Neuroscience's open-access journal launched in 2014, publishes rigorous neuroscience research with double-blind peer review that masks the identity of both the authors and reviewers, minimizing the potential for implicit biases. eNeuro is distinguished by a broader scope and balanced perspective achieved by publishing negative results, failure to replicate or replication studies. New research, computational neuroscience, theories and methods are also published.

About The Society for Neuroscience

The Society for Neuroscience is the world's largest organization of scientists and physicians devoted to understanding the brain and nervous system. The nonprofit organization, founded in 1969, now has nearly 37,000 members in more than 90 countries and over 130 chapters worldwide.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.