Recyclable reagent and sunlight convert carbon monoxide into methanol
Peer-Reviewed Publication
Select a state to view local articles and features
Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and the University of North Carolina Chapel Hill (UNC) have demonstrated the selective conversion of carbon dioxide (CO2) into methanol using a cascade reaction strategy. The two-part process is powered by sunlight, occurs at room temperature and at ambient pressure, and employs a recyclable organic reagent that’s similar to a catalyst found in natural photosynthesis.
Theorists and computational scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Stony Brook University (SBU) ran a series of quantum simulations to explore one of the quirkiest features of the quantum realm: entanglement. The study takes quantum back to its roots in seeking to explain the behavior of subatomic particles.
Scientists at Brookhaven National Laboratory and Oklahoma State University have identified key genes and the mechanism by which they control flowering in sorghum, an important bioenergy crop. The findings suggest strategies to delay sorghum flowering to maximize plant growth and the amount of biomass available for generating biofuels and bioproducts.
A new analysis by the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC), a particle collider at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, provides the first direct evidence of the imprint left by what may be the universe’s most powerful magnetic fields on “deconfined” nuclear matter. The evidence comes from measuring the way differently charged particles separate when emerging from collisions of atomic nuclei at this DOE Office of Science user facility.
Biologists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have demonstrated a new way to boost the oil content of plant leaves and seeds. As described in the journal New Phytologist, the scientists identified and successfully altered key portions of a protein that protects newly synthesized oil droplets. The genetic alterations essentially protect the oil-protector protein so more oil can accumulate.
Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum’s ability to hold onto quantum information in qubits.
Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and DOE’s Pacific Northwest National Laboratory (PNNL) have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum—a superconductor that shows great promise for making the “qubit” building blocks of a quantum computer—it can impede the material’s ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens—and potentially point to ways to prevent quantum coherence loss.
Representatives of France’s National Center for Scientific Research (CNRS) and the U.S. Department of Energy (DOE) have signed a new “Statement of Interest” in future cooperation on the Electron-Ion Collider (EIC), a unique facility for exploring the building blocks of matter and the strongest force in nature.
Julian Martinez-Rincon, a quantum scientist at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, has been elected vice chair of the Standards & Performance Metrics Technical Advisory Committee (TAC) of the Quantum Economic Development Consortium (QED-C). After serving as vice chair for the 2024 calendar year, he is expected to serve as chair of the TAC for the 2025 calendar year.
On a mission to build better electric vehicle batteries, chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have used an electrolyte additive to improve the functionality of energy-dense lithium metal batteries. By adding a compound called cesium nitrate to the electrolyte that separates the battery’s anode and cathode, the research team has significantly improved the charging rate of lithium metal batteries while maintaining a long cycle life.