Living in the deep, dark, slow lane: Insights from the first global appraisal of microbiomes in earth’s subsurface environments
Peer-Reviewed Publication
Updates every hour. Last Updated: 6-May-2025 01:09 ET (6-May-2025 05:09 GMT/UTC)
Which microbes thrive below us in darkness – in gold mines, in aquifers, in deep boreholes in the seafloor – and how do they compare to the microbiomes that envelop the Earth’s surfaces, on land and sea? The first global study to embrace this huge question, conducted at the Marine Biological Laboratory (MBL), Woods Hole, reveals astonishingly high microbial diversity in some subsurface environments, pointing to vast, untapped, subsurface reservoirs of diversity for bioprospecting new compounds and medicinals, for understanding how cells adapt to extremely low-energy environments, and for illuminating the search for extraterrestrial life. Led by MBL Associate Scientist Emil Ruff, the study is published this week in Science Advances.
The phytoplankton that populate oceans are known to play a key role in marine ecosystems and climate regulation. Like terrestrial plants, they store atmospheric CO₂, and produce half of our planet’s oxygen via photosynthesis. However, the mechanisms that control their distribution remain poorly understood.
A groundbreaking study from South Korea has revealed the evolutionary journey of brown algae through genomic analysis. The research highlights key milestones, including the transition to multicellularity and species diversification, and uncovers viral integrations in brown algae genomes that influenced their evolution. It also explores practical applications in aquaculture, biotechnology, and climate change mitigation, emphasizing brown algae's potential for carbon capture and ecosystem restoration, while offering valuable insights into enhancing ecological resilience amid climatic challenges.
Stanford scientists have discovered multiple forms of a ubiquitous enzyme in microbes that thrive in low-oxygen zones off the coasts of Central and South America. The results may open new possibilities for growing crops with fewer resources and understanding ocean carbon storage.
Durham University scientists have made a groundbreaking discovery in marine geoscience, revealing unprecedented insights into the dynamics of Earth’s longest runout sediment flows.
A new analysis published in the journal Science reveals that overfishing has caused populations of chondrichthyan fishes – sharks, rays, and chimaeras – to decline by more than 50 per cent since 1970. To determine the consequences, a team of researchers developed an aquatic Red List Index (RLI) which shows that the risk of extinction for chondrichthyan has increased by 19 per cent. The study also highlights that the overfishing of the largest species in nearshore and pelagic habitats could eliminate up to 22 per cent of ecological functions.
Chondrichthyans are an ancient and ecologically diverse group of over 1,199 fishes that are increasingly threatened by human activities. Overexploitation by target fisheries and incidental capture (bycatch), compounded by habitat degradation, climate change and pollution, has resulted in over one-third of chondrichthyans facing extinction. Here, the RLI was used to track the status of these species over the past 50-years.